projektAI/venv/Lib/site-packages/mlxtend/evaluate/cochrans_q.py

90 lines
2.7 KiB
Python
Raw Permalink Normal View History

2021-06-06 22:13:05 +02:00
# Sebastian Raschka 2014-2020
# mlxtend Machine Learning Library Extensions
#
# Author: Sebastian Raschka <sebastianraschka.com>
#
# License: BSD 3 clause
import numpy as np
import scipy.stats
import itertools
def cochrans_q(y_target, *y_model_predictions):
"""
Cochran's Q test to compare 2 or more models.
Parameters
-----------
y_target : array-like, shape=[n_samples]
True class labels as 1D NumPy array.
*y_model_predictions : array-likes, shape=[n_samples]
Variable number of 2 or more arrays that
contain the predicted class labels
from models as 1D NumPy array.
Returns
-----------
q, p : float or None, float
Returns the Q (chi-squared) value and the p-value
Examples
-----------
For usage examples, please see
http://rasbt.github.io/mlxtend/user_guide/evaluate/cochrans_q/
"""
num_models = len(y_model_predictions)
# Checks
model_lens = set()
y_model_predictions = list(y_model_predictions)
for ary in ([y_target] + y_model_predictions):
if len(ary.shape) != 1:
raise ValueError('One or more input arrays are not 1-dimensional.')
model_lens.add(ary.shape[0])
if len(model_lens) > 1:
raise ValueError('Each prediction array must have the '
'same number of samples.')
if num_models < 2:
raise ValueError('Provide at least 2 model prediction arrays.')
# Q test statistic
degrees_of_freedom = num_models - 1
# numerator
correctly_classified_all_models = 0
correctly_classified_collection = []
for pred in y_model_predictions:
correctly_classified = (y_target == pred).sum()
correctly_classified_all_models += correctly_classified
correctly_classified_collection.append(correctly_classified)
numerator = (num_models * sum([c**2 for c in
correctly_classified_collection]) -
correctly_classified_all_models**2)
# denominator
binary_combin = list(itertools.product([0, 1], repeat=num_models))
ary = np.hstack([(y_target == mod).reshape(-1, 1) for
mod in y_model_predictions]).astype(int)
correctly_classified_objects = 0
binary_combin_totals = np.zeros(len(binary_combin))
for i, c in enumerate(binary_combin):
binary_combin_totals[i] = ((ary == c).sum(axis=1) == num_models).sum()
correctly_classified_objects += (sum(c)**2 * binary_combin_totals[i])
denominator = (num_models * correctly_classified_all_models -
correctly_classified_objects)
q = degrees_of_freedom * numerator/denominator
p_value = scipy.stats.chi2.sf(q, degrees_of_freedom)
return q, p_value