projektAI/venv/Lib/site-packages/mlxtend/evaluate/confusion_matrix.py

70 lines
2.1 KiB
Python
Raw Permalink Normal View History

2021-06-06 22:13:05 +02:00
# Sebastian Raschka 2014-2020
# mlxtend Machine Learning Library Extensions
#
# A function for generating a confusion matrix.
# Author: Sebastian Raschka <sebastianraschka.com>
#
# License: BSD 3 clause
from itertools import product
import numpy as np
def confusion_matrix(y_target, y_predicted, binary=False, positive_label=1):
"""Compute a confusion matrix/contingency table.
Parameters
-----------
y_target : array-like, shape=[n_samples]
True class labels.
y_predicted : array-like, shape=[n_samples]
Predicted class labels.
binary : bool (default: False)
Maps a multi-class problem onto a
binary confusion matrix, where
the positive class is 1 and
all other classes are 0.
positive_label : int (default: 1)
Class label of the positive class.
Returns
----------
mat : array-like, shape=[n_classes, n_classes]
Examples
-----------
For usage examples, please see
http://rasbt.github.io/mlxtend/user_guide/evaluate/confusion_matrix/
"""
if not isinstance(y_target, np.ndarray):
targ_tmp = np.asarray(y_target)
else:
targ_tmp = y_target
if not isinstance(y_predicted, np.ndarray):
pred_tmp = np.asarray(y_predicted)
else:
pred_tmp = y_predicted
if len(y_target) != len(y_predicted):
raise AttributeError('`y_target` and `y_predicted`'
' don\'t have the same number of elements.')
if binary:
targ_tmp = np.where(targ_tmp != positive_label, 0, 1)
pred_tmp = np.where(pred_tmp != positive_label, 0, 1)
class_labels = np.unique(np.concatenate((targ_tmp, pred_tmp)))
if class_labels.shape[0] == 1:
if class_labels[0] != 0:
class_labels = np.array([0, class_labels[0]])
else:
class_labels = np.array([class_labels[0], 1])
n_labels = class_labels.shape[0]
lst = []
z = list(zip(targ_tmp, pred_tmp))
for combi in product(class_labels, repeat=2):
lst.append(z.count(combi))
mat = np.asarray(lst)[:, None].reshape(n_labels, n_labels)
return mat