805 lines
24 KiB
Python
805 lines
24 KiB
Python
|
"""
|
||
|
Routines for filling missing data.
|
||
|
"""
|
||
|
from functools import partial
|
||
|
from typing import TYPE_CHECKING, Any, List, Optional, Set, Union
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas._libs import algos, lib
|
||
|
from pandas._typing import ArrayLike, Axis, DtypeObj
|
||
|
from pandas.compat._optional import import_optional_dependency
|
||
|
|
||
|
from pandas.core.dtypes.cast import infer_dtype_from_array
|
||
|
from pandas.core.dtypes.common import (
|
||
|
ensure_float64,
|
||
|
is_integer_dtype,
|
||
|
is_numeric_v_string_like,
|
||
|
needs_i8_conversion,
|
||
|
)
|
||
|
from pandas.core.dtypes.missing import isna
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from pandas import Index
|
||
|
|
||
|
|
||
|
def mask_missing(arr: ArrayLike, values_to_mask) -> np.ndarray:
|
||
|
"""
|
||
|
Return a masking array of same size/shape as arr
|
||
|
with entries equaling any member of values_to_mask set to True
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
arr : ArrayLike
|
||
|
values_to_mask: list, tuple, or scalar
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
np.ndarray[bool]
|
||
|
"""
|
||
|
# When called from Block.replace/replace_list, values_to_mask is a scalar
|
||
|
# known to be holdable by arr.
|
||
|
# When called from Series._single_replace, values_to_mask is tuple or list
|
||
|
dtype, values_to_mask = infer_dtype_from_array(values_to_mask)
|
||
|
values_to_mask = np.array(values_to_mask, dtype=dtype)
|
||
|
|
||
|
na_mask = isna(values_to_mask)
|
||
|
nonna = values_to_mask[~na_mask]
|
||
|
|
||
|
# GH 21977
|
||
|
mask = np.zeros(arr.shape, dtype=bool)
|
||
|
for x in nonna:
|
||
|
if is_numeric_v_string_like(arr, x):
|
||
|
# GH#29553 prevent numpy deprecation warnings
|
||
|
pass
|
||
|
else:
|
||
|
mask |= arr == x
|
||
|
|
||
|
if na_mask.any():
|
||
|
mask |= isna(arr)
|
||
|
|
||
|
return mask
|
||
|
|
||
|
|
||
|
def clean_fill_method(method, allow_nearest: bool = False):
|
||
|
# asfreq is compat for resampling
|
||
|
if method in [None, "asfreq"]:
|
||
|
return None
|
||
|
|
||
|
if isinstance(method, str):
|
||
|
method = method.lower()
|
||
|
if method == "ffill":
|
||
|
method = "pad"
|
||
|
elif method == "bfill":
|
||
|
method = "backfill"
|
||
|
|
||
|
valid_methods = ["pad", "backfill"]
|
||
|
expecting = "pad (ffill) or backfill (bfill)"
|
||
|
if allow_nearest:
|
||
|
valid_methods.append("nearest")
|
||
|
expecting = "pad (ffill), backfill (bfill) or nearest"
|
||
|
if method not in valid_methods:
|
||
|
raise ValueError(f"Invalid fill method. Expecting {expecting}. Got {method}")
|
||
|
return method
|
||
|
|
||
|
|
||
|
# interpolation methods that dispatch to np.interp
|
||
|
|
||
|
NP_METHODS = ["linear", "time", "index", "values"]
|
||
|
|
||
|
# interpolation methods that dispatch to _interpolate_scipy_wrapper
|
||
|
|
||
|
SP_METHODS = [
|
||
|
"nearest",
|
||
|
"zero",
|
||
|
"slinear",
|
||
|
"quadratic",
|
||
|
"cubic",
|
||
|
"barycentric",
|
||
|
"krogh",
|
||
|
"spline",
|
||
|
"polynomial",
|
||
|
"from_derivatives",
|
||
|
"piecewise_polynomial",
|
||
|
"pchip",
|
||
|
"akima",
|
||
|
"cubicspline",
|
||
|
]
|
||
|
|
||
|
|
||
|
def clean_interp_method(method: str, **kwargs) -> str:
|
||
|
order = kwargs.get("order")
|
||
|
|
||
|
if method in ("spline", "polynomial") and order is None:
|
||
|
raise ValueError("You must specify the order of the spline or polynomial.")
|
||
|
|
||
|
valid = NP_METHODS + SP_METHODS
|
||
|
if method not in valid:
|
||
|
raise ValueError(f"method must be one of {valid}. Got '{method}' instead.")
|
||
|
|
||
|
return method
|
||
|
|
||
|
|
||
|
def find_valid_index(values, how: str):
|
||
|
"""
|
||
|
Retrieves the index of the first valid value.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
values : ndarray or ExtensionArray
|
||
|
how : {'first', 'last'}
|
||
|
Use this parameter to change between the first or last valid index.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
int or None
|
||
|
"""
|
||
|
assert how in ["first", "last"]
|
||
|
|
||
|
if len(values) == 0: # early stop
|
||
|
return None
|
||
|
|
||
|
is_valid = ~isna(values)
|
||
|
|
||
|
if values.ndim == 2:
|
||
|
is_valid = is_valid.any(1) # reduce axis 1
|
||
|
|
||
|
if how == "first":
|
||
|
idxpos = is_valid[::].argmax()
|
||
|
|
||
|
if how == "last":
|
||
|
idxpos = len(values) - 1 - is_valid[::-1].argmax()
|
||
|
|
||
|
chk_notna = is_valid[idxpos]
|
||
|
|
||
|
if not chk_notna:
|
||
|
return None
|
||
|
return idxpos
|
||
|
|
||
|
|
||
|
def interpolate_1d(
|
||
|
xvalues: "Index",
|
||
|
yvalues: np.ndarray,
|
||
|
method: Optional[str] = "linear",
|
||
|
limit: Optional[int] = None,
|
||
|
limit_direction: str = "forward",
|
||
|
limit_area: Optional[str] = None,
|
||
|
fill_value: Optional[Any] = None,
|
||
|
bounds_error: bool = False,
|
||
|
order: Optional[int] = None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
"""
|
||
|
Logic for the 1-d interpolation. The result should be 1-d, inputs
|
||
|
xvalues and yvalues will each be 1-d arrays of the same length.
|
||
|
|
||
|
Bounds_error is currently hardcoded to False since non-scipy ones don't
|
||
|
take it as an argument.
|
||
|
"""
|
||
|
invalid = isna(yvalues)
|
||
|
valid = ~invalid
|
||
|
|
||
|
if not valid.any():
|
||
|
result = np.empty(xvalues.shape, dtype=np.float64)
|
||
|
result.fill(np.nan)
|
||
|
return result
|
||
|
|
||
|
if valid.all():
|
||
|
return yvalues
|
||
|
|
||
|
if method == "time":
|
||
|
if not needs_i8_conversion(xvalues.dtype):
|
||
|
raise ValueError(
|
||
|
"time-weighted interpolation only works "
|
||
|
"on Series or DataFrames with a "
|
||
|
"DatetimeIndex"
|
||
|
)
|
||
|
method = "values"
|
||
|
|
||
|
valid_limit_directions = ["forward", "backward", "both"]
|
||
|
limit_direction = limit_direction.lower()
|
||
|
if limit_direction not in valid_limit_directions:
|
||
|
raise ValueError(
|
||
|
"Invalid limit_direction: expecting one of "
|
||
|
f"{valid_limit_directions}, got '{limit_direction}'."
|
||
|
)
|
||
|
|
||
|
if limit_area is not None:
|
||
|
valid_limit_areas = ["inside", "outside"]
|
||
|
limit_area = limit_area.lower()
|
||
|
if limit_area not in valid_limit_areas:
|
||
|
raise ValueError(
|
||
|
f"Invalid limit_area: expecting one of {valid_limit_areas}, got "
|
||
|
f"{limit_area}."
|
||
|
)
|
||
|
|
||
|
# default limit is unlimited GH #16282
|
||
|
limit = algos.validate_limit(nobs=None, limit=limit)
|
||
|
|
||
|
# These are sets of index pointers to invalid values... i.e. {0, 1, etc...
|
||
|
all_nans = set(np.flatnonzero(invalid))
|
||
|
start_nans = set(range(find_valid_index(yvalues, "first")))
|
||
|
end_nans = set(range(1 + find_valid_index(yvalues, "last"), len(valid)))
|
||
|
mid_nans = all_nans - start_nans - end_nans
|
||
|
|
||
|
# Like the sets above, preserve_nans contains indices of invalid values,
|
||
|
# but in this case, it is the final set of indices that need to be
|
||
|
# preserved as NaN after the interpolation.
|
||
|
|
||
|
# For example if limit_direction='forward' then preserve_nans will
|
||
|
# contain indices of NaNs at the beginning of the series, and NaNs that
|
||
|
# are more than'limit' away from the prior non-NaN.
|
||
|
|
||
|
# set preserve_nans based on direction using _interp_limit
|
||
|
preserve_nans: Union[List, Set]
|
||
|
if limit_direction == "forward":
|
||
|
preserve_nans = start_nans | set(_interp_limit(invalid, limit, 0))
|
||
|
elif limit_direction == "backward":
|
||
|
preserve_nans = end_nans | set(_interp_limit(invalid, 0, limit))
|
||
|
else:
|
||
|
# both directions... just use _interp_limit
|
||
|
preserve_nans = set(_interp_limit(invalid, limit, limit))
|
||
|
|
||
|
# if limit_area is set, add either mid or outside indices
|
||
|
# to preserve_nans GH #16284
|
||
|
if limit_area == "inside":
|
||
|
# preserve NaNs on the outside
|
||
|
preserve_nans |= start_nans | end_nans
|
||
|
elif limit_area == "outside":
|
||
|
# preserve NaNs on the inside
|
||
|
preserve_nans |= mid_nans
|
||
|
|
||
|
# sort preserve_nans and covert to list
|
||
|
preserve_nans = sorted(preserve_nans)
|
||
|
|
||
|
result = yvalues.copy()
|
||
|
|
||
|
# xarr to pass to NumPy/SciPy
|
||
|
xarr = xvalues._values
|
||
|
if needs_i8_conversion(xarr.dtype):
|
||
|
# GH#1646 for dt64tz
|
||
|
xarr = xarr.view("i8")
|
||
|
|
||
|
if method == "linear":
|
||
|
inds = xarr
|
||
|
else:
|
||
|
inds = np.asarray(xarr)
|
||
|
|
||
|
if method in ("values", "index"):
|
||
|
if inds.dtype == np.object_:
|
||
|
inds = lib.maybe_convert_objects(inds)
|
||
|
|
||
|
if method in NP_METHODS:
|
||
|
# np.interp requires sorted X values, #21037
|
||
|
indexer = np.argsort(inds[valid])
|
||
|
result[invalid] = np.interp(
|
||
|
inds[invalid], inds[valid][indexer], yvalues[valid][indexer]
|
||
|
)
|
||
|
else:
|
||
|
result[invalid] = _interpolate_scipy_wrapper(
|
||
|
inds[valid],
|
||
|
yvalues[valid],
|
||
|
inds[invalid],
|
||
|
method=method,
|
||
|
fill_value=fill_value,
|
||
|
bounds_error=bounds_error,
|
||
|
order=order,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
result[preserve_nans] = np.nan
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _interpolate_scipy_wrapper(
|
||
|
x, y, new_x, method, fill_value=None, bounds_error=False, order=None, **kwargs
|
||
|
):
|
||
|
"""
|
||
|
Passed off to scipy.interpolate.interp1d. method is scipy's kind.
|
||
|
Returns an array interpolated at new_x. Add any new methods to
|
||
|
the list in _clean_interp_method.
|
||
|
"""
|
||
|
extra = f"{method} interpolation requires SciPy."
|
||
|
import_optional_dependency("scipy", extra=extra)
|
||
|
from scipy import interpolate
|
||
|
|
||
|
new_x = np.asarray(new_x)
|
||
|
|
||
|
# ignores some kwargs that could be passed along.
|
||
|
alt_methods = {
|
||
|
"barycentric": interpolate.barycentric_interpolate,
|
||
|
"krogh": interpolate.krogh_interpolate,
|
||
|
"from_derivatives": _from_derivatives,
|
||
|
"piecewise_polynomial": _from_derivatives,
|
||
|
}
|
||
|
|
||
|
if getattr(x, "_is_all_dates", False):
|
||
|
# GH 5975, scipy.interp1d can't handle datetime64s
|
||
|
x, new_x = x._values.astype("i8"), new_x.astype("i8")
|
||
|
|
||
|
if method == "pchip":
|
||
|
alt_methods["pchip"] = interpolate.pchip_interpolate
|
||
|
elif method == "akima":
|
||
|
alt_methods["akima"] = _akima_interpolate
|
||
|
elif method == "cubicspline":
|
||
|
alt_methods["cubicspline"] = _cubicspline_interpolate
|
||
|
|
||
|
interp1d_methods = [
|
||
|
"nearest",
|
||
|
"zero",
|
||
|
"slinear",
|
||
|
"quadratic",
|
||
|
"cubic",
|
||
|
"polynomial",
|
||
|
]
|
||
|
if method in interp1d_methods:
|
||
|
if method == "polynomial":
|
||
|
method = order
|
||
|
terp = interpolate.interp1d(
|
||
|
x, y, kind=method, fill_value=fill_value, bounds_error=bounds_error
|
||
|
)
|
||
|
new_y = terp(new_x)
|
||
|
elif method == "spline":
|
||
|
# GH #10633, #24014
|
||
|
if isna(order) or (order <= 0):
|
||
|
raise ValueError(
|
||
|
f"order needs to be specified and greater than 0; got order: {order}"
|
||
|
)
|
||
|
terp = interpolate.UnivariateSpline(x, y, k=order, **kwargs)
|
||
|
new_y = terp(new_x)
|
||
|
else:
|
||
|
# GH 7295: need to be able to write for some reason
|
||
|
# in some circumstances: check all three
|
||
|
if not x.flags.writeable:
|
||
|
x = x.copy()
|
||
|
if not y.flags.writeable:
|
||
|
y = y.copy()
|
||
|
if not new_x.flags.writeable:
|
||
|
new_x = new_x.copy()
|
||
|
method = alt_methods[method]
|
||
|
new_y = method(x, y, new_x, **kwargs)
|
||
|
return new_y
|
||
|
|
||
|
|
||
|
def _from_derivatives(xi, yi, x, order=None, der=0, extrapolate=False):
|
||
|
"""
|
||
|
Convenience function for interpolate.BPoly.from_derivatives.
|
||
|
|
||
|
Construct a piecewise polynomial in the Bernstein basis, compatible
|
||
|
with the specified values and derivatives at breakpoints.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
xi : array_like
|
||
|
sorted 1D array of x-coordinates
|
||
|
yi : array_like or list of array-likes
|
||
|
yi[i][j] is the j-th derivative known at xi[i]
|
||
|
order: None or int or array_like of ints. Default: None.
|
||
|
Specifies the degree of local polynomials. If not None, some
|
||
|
derivatives are ignored.
|
||
|
der : int or list
|
||
|
How many derivatives to extract; None for all potentially nonzero
|
||
|
derivatives (that is a number equal to the number of points), or a
|
||
|
list of derivatives to extract. This number includes the function
|
||
|
value as 0th derivative.
|
||
|
extrapolate : bool, optional
|
||
|
Whether to extrapolate to ouf-of-bounds points based on first and last
|
||
|
intervals, or to return NaNs. Default: True.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
scipy.interpolate.BPoly.from_derivatives
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : scalar or array_like
|
||
|
The result, of length R or length M or M by R.
|
||
|
"""
|
||
|
from scipy import interpolate
|
||
|
|
||
|
# return the method for compat with scipy version & backwards compat
|
||
|
method = interpolate.BPoly.from_derivatives
|
||
|
m = method(xi, yi.reshape(-1, 1), orders=order, extrapolate=extrapolate)
|
||
|
|
||
|
return m(x)
|
||
|
|
||
|
|
||
|
def _akima_interpolate(xi, yi, x, der=0, axis=0):
|
||
|
"""
|
||
|
Convenience function for akima interpolation.
|
||
|
xi and yi are arrays of values used to approximate some function f,
|
||
|
with ``yi = f(xi)``.
|
||
|
|
||
|
See `Akima1DInterpolator` for details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
xi : array_like
|
||
|
A sorted list of x-coordinates, of length N.
|
||
|
yi : array_like
|
||
|
A 1-D array of real values. `yi`'s length along the interpolation
|
||
|
axis must be equal to the length of `xi`. If N-D array, use axis
|
||
|
parameter to select correct axis.
|
||
|
x : scalar or array_like
|
||
|
Of length M.
|
||
|
der : int, optional
|
||
|
How many derivatives to extract; None for all potentially
|
||
|
nonzero derivatives (that is a number equal to the number
|
||
|
of points), or a list of derivatives to extract. This number
|
||
|
includes the function value as 0th derivative.
|
||
|
axis : int, optional
|
||
|
Axis in the yi array corresponding to the x-coordinate values.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
scipy.interpolate.Akima1DInterpolator
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : scalar or array_like
|
||
|
The result, of length R or length M or M by R,
|
||
|
|
||
|
"""
|
||
|
from scipy import interpolate
|
||
|
|
||
|
P = interpolate.Akima1DInterpolator(xi, yi, axis=axis)
|
||
|
|
||
|
return P(x, nu=der)
|
||
|
|
||
|
|
||
|
def _cubicspline_interpolate(xi, yi, x, axis=0, bc_type="not-a-knot", extrapolate=None):
|
||
|
"""
|
||
|
Convenience function for cubic spline data interpolator.
|
||
|
|
||
|
See `scipy.interpolate.CubicSpline` for details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
xi : array_like, shape (n,)
|
||
|
1-d array containing values of the independent variable.
|
||
|
Values must be real, finite and in strictly increasing order.
|
||
|
yi : array_like
|
||
|
Array containing values of the dependent variable. It can have
|
||
|
arbitrary number of dimensions, but the length along ``axis``
|
||
|
(see below) must match the length of ``x``. Values must be finite.
|
||
|
x : scalar or array_like, shape (m,)
|
||
|
axis : int, optional
|
||
|
Axis along which `y` is assumed to be varying. Meaning that for
|
||
|
``x[i]`` the corresponding values are ``np.take(y, i, axis=axis)``.
|
||
|
Default is 0.
|
||
|
bc_type : string or 2-tuple, optional
|
||
|
Boundary condition type. Two additional equations, given by the
|
||
|
boundary conditions, are required to determine all coefficients of
|
||
|
polynomials on each segment [2]_.
|
||
|
If `bc_type` is a string, then the specified condition will be applied
|
||
|
at both ends of a spline. Available conditions are:
|
||
|
* 'not-a-knot' (default): The first and second segment at a curve end
|
||
|
are the same polynomial. It is a good default when there is no
|
||
|
information on boundary conditions.
|
||
|
* 'periodic': The interpolated functions is assumed to be periodic
|
||
|
of period ``x[-1] - x[0]``. The first and last value of `y` must be
|
||
|
identical: ``y[0] == y[-1]``. This boundary condition will result in
|
||
|
``y'[0] == y'[-1]`` and ``y''[0] == y''[-1]``.
|
||
|
* 'clamped': The first derivative at curves ends are zero. Assuming
|
||
|
a 1D `y`, ``bc_type=((1, 0.0), (1, 0.0))`` is the same condition.
|
||
|
* 'natural': The second derivative at curve ends are zero. Assuming
|
||
|
a 1D `y`, ``bc_type=((2, 0.0), (2, 0.0))`` is the same condition.
|
||
|
If `bc_type` is a 2-tuple, the first and the second value will be
|
||
|
applied at the curve start and end respectively. The tuple values can
|
||
|
be one of the previously mentioned strings (except 'periodic') or a
|
||
|
tuple `(order, deriv_values)` allowing to specify arbitrary
|
||
|
derivatives at curve ends:
|
||
|
* `order`: the derivative order, 1 or 2.
|
||
|
* `deriv_value`: array_like containing derivative values, shape must
|
||
|
be the same as `y`, excluding ``axis`` dimension. For example, if
|
||
|
`y` is 1D, then `deriv_value` must be a scalar. If `y` is 3D with
|
||
|
the shape (n0, n1, n2) and axis=2, then `deriv_value` must be 2D
|
||
|
and have the shape (n0, n1).
|
||
|
extrapolate : {bool, 'periodic', None}, optional
|
||
|
If bool, determines whether to extrapolate to out-of-bounds points
|
||
|
based on first and last intervals, or to return NaNs. If 'periodic',
|
||
|
periodic extrapolation is used. If None (default), ``extrapolate`` is
|
||
|
set to 'periodic' for ``bc_type='periodic'`` and to True otherwise.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
scipy.interpolate.CubicHermiteSpline
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : scalar or array_like
|
||
|
The result, of shape (m,)
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] `Cubic Spline Interpolation
|
||
|
<https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation>`_
|
||
|
on Wikiversity.
|
||
|
.. [2] Carl de Boor, "A Practical Guide to Splines", Springer-Verlag, 1978.
|
||
|
"""
|
||
|
from scipy import interpolate
|
||
|
|
||
|
P = interpolate.CubicSpline(
|
||
|
xi, yi, axis=axis, bc_type=bc_type, extrapolate=extrapolate
|
||
|
)
|
||
|
|
||
|
return P(x)
|
||
|
|
||
|
|
||
|
def _interpolate_with_limit_area(
|
||
|
values: ArrayLike, method: str, limit: Optional[int], limit_area: Optional[str]
|
||
|
) -> ArrayLike:
|
||
|
"""
|
||
|
Apply interpolation and limit_area logic to values along a to-be-specified axis.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
values: array-like
|
||
|
Input array.
|
||
|
method: str
|
||
|
Interpolation method. Could be "bfill" or "pad"
|
||
|
limit: int, optional
|
||
|
Index limit on interpolation.
|
||
|
limit_area: str
|
||
|
Limit area for interpolation. Can be "inside" or "outside"
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
values: array-like
|
||
|
Interpolated array.
|
||
|
"""
|
||
|
|
||
|
invalid = isna(values)
|
||
|
|
||
|
if not invalid.all():
|
||
|
first = find_valid_index(values, "first")
|
||
|
last = find_valid_index(values, "last")
|
||
|
|
||
|
values = interpolate_2d(
|
||
|
values,
|
||
|
method=method,
|
||
|
limit=limit,
|
||
|
)
|
||
|
|
||
|
if limit_area == "inside":
|
||
|
invalid[first : last + 1] = False
|
||
|
elif limit_area == "outside":
|
||
|
invalid[:first] = invalid[last + 1 :] = False
|
||
|
|
||
|
values[invalid] = np.nan
|
||
|
|
||
|
return values
|
||
|
|
||
|
|
||
|
def interpolate_2d(
|
||
|
values,
|
||
|
method: str = "pad",
|
||
|
axis: Axis = 0,
|
||
|
limit: Optional[int] = None,
|
||
|
limit_area: Optional[str] = None,
|
||
|
):
|
||
|
"""
|
||
|
Perform an actual interpolation of values, values will be make 2-d if
|
||
|
needed fills inplace, returns the result.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
values: array-like
|
||
|
Input array.
|
||
|
method: str, default "pad"
|
||
|
Interpolation method. Could be "bfill" or "pad"
|
||
|
axis: 0 or 1
|
||
|
Interpolation axis
|
||
|
limit: int, optional
|
||
|
Index limit on interpolation.
|
||
|
limit_area: str, optional
|
||
|
Limit area for interpolation. Can be "inside" or "outside"
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
values: array-like
|
||
|
Interpolated array.
|
||
|
"""
|
||
|
if limit_area is not None:
|
||
|
return np.apply_along_axis(
|
||
|
partial(
|
||
|
_interpolate_with_limit_area,
|
||
|
method=method,
|
||
|
limit=limit,
|
||
|
limit_area=limit_area,
|
||
|
),
|
||
|
axis,
|
||
|
values,
|
||
|
)
|
||
|
|
||
|
orig_values = values
|
||
|
|
||
|
transf = (lambda x: x) if axis == 0 else (lambda x: x.T)
|
||
|
|
||
|
# reshape a 1 dim if needed
|
||
|
ndim = values.ndim
|
||
|
if values.ndim == 1:
|
||
|
if axis != 0: # pragma: no cover
|
||
|
raise AssertionError("cannot interpolate on a ndim == 1 with axis != 0")
|
||
|
values = values.reshape(tuple((1,) + values.shape))
|
||
|
|
||
|
method = clean_fill_method(method)
|
||
|
tvalues = transf(values)
|
||
|
if method == "pad":
|
||
|
result = _pad_2d(tvalues, limit=limit)
|
||
|
else:
|
||
|
result = _backfill_2d(tvalues, limit=limit)
|
||
|
|
||
|
result = transf(result)
|
||
|
# reshape back
|
||
|
if ndim == 1:
|
||
|
result = result[0]
|
||
|
|
||
|
if orig_values.dtype.kind in ["m", "M"]:
|
||
|
# convert float back to datetime64/timedelta64
|
||
|
result = result.view(orig_values.dtype)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _cast_values_for_fillna(values, dtype: DtypeObj, has_mask: bool):
|
||
|
"""
|
||
|
Cast values to a dtype that algos.pad and algos.backfill can handle.
|
||
|
"""
|
||
|
# TODO: for int-dtypes we make a copy, but for everything else this
|
||
|
# alters the values in-place. Is this intentional?
|
||
|
|
||
|
if needs_i8_conversion(dtype):
|
||
|
values = values.view(np.int64)
|
||
|
|
||
|
elif is_integer_dtype(values) and not has_mask:
|
||
|
# NB: this check needs to come after the datetime64 check above
|
||
|
# has_mask check to avoid casting i8 values that have already
|
||
|
# been cast from PeriodDtype
|
||
|
values = ensure_float64(values)
|
||
|
|
||
|
return values
|
||
|
|
||
|
|
||
|
def _fillna_prep(values, mask=None):
|
||
|
# boilerplate for _pad_1d, _backfill_1d, _pad_2d, _backfill_2d
|
||
|
dtype = values.dtype
|
||
|
|
||
|
has_mask = mask is not None
|
||
|
if not has_mask:
|
||
|
# This needs to occur before datetime/timedeltas are cast to int64
|
||
|
mask = isna(values)
|
||
|
|
||
|
values = _cast_values_for_fillna(values, dtype, has_mask)
|
||
|
|
||
|
mask = mask.view(np.uint8)
|
||
|
return values, mask
|
||
|
|
||
|
|
||
|
def _pad_1d(values, limit=None, mask=None):
|
||
|
values, mask = _fillna_prep(values, mask)
|
||
|
algos.pad_inplace(values, mask, limit=limit)
|
||
|
return values
|
||
|
|
||
|
|
||
|
def _backfill_1d(values, limit=None, mask=None):
|
||
|
values, mask = _fillna_prep(values, mask)
|
||
|
algos.backfill_inplace(values, mask, limit=limit)
|
||
|
return values
|
||
|
|
||
|
|
||
|
def _pad_2d(values, limit=None, mask=None):
|
||
|
values, mask = _fillna_prep(values, mask)
|
||
|
|
||
|
if np.all(values.shape):
|
||
|
algos.pad_2d_inplace(values, mask, limit=limit)
|
||
|
else:
|
||
|
# for test coverage
|
||
|
pass
|
||
|
return values
|
||
|
|
||
|
|
||
|
def _backfill_2d(values, limit=None, mask=None):
|
||
|
values, mask = _fillna_prep(values, mask)
|
||
|
|
||
|
if np.all(values.shape):
|
||
|
algos.backfill_2d_inplace(values, mask, limit=limit)
|
||
|
else:
|
||
|
# for test coverage
|
||
|
pass
|
||
|
return values
|
||
|
|
||
|
|
||
|
_fill_methods = {"pad": _pad_1d, "backfill": _backfill_1d}
|
||
|
|
||
|
|
||
|
def get_fill_func(method):
|
||
|
method = clean_fill_method(method)
|
||
|
return _fill_methods[method]
|
||
|
|
||
|
|
||
|
def clean_reindex_fill_method(method):
|
||
|
return clean_fill_method(method, allow_nearest=True)
|
||
|
|
||
|
|
||
|
def _interp_limit(invalid, fw_limit, bw_limit):
|
||
|
"""
|
||
|
Get indexers of values that won't be filled
|
||
|
because they exceed the limits.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
invalid : boolean ndarray
|
||
|
fw_limit : int or None
|
||
|
forward limit to index
|
||
|
bw_limit : int or None
|
||
|
backward limit to index
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
set of indexers
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is equivalent to the more readable, but slower
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
def _interp_limit(invalid, fw_limit, bw_limit):
|
||
|
for x in np.where(invalid)[0]:
|
||
|
if invalid[max(0, x - fw_limit):x + bw_limit + 1].all():
|
||
|
yield x
|
||
|
"""
|
||
|
# handle forward first; the backward direction is the same except
|
||
|
# 1. operate on the reversed array
|
||
|
# 2. subtract the returned indices from N - 1
|
||
|
N = len(invalid)
|
||
|
f_idx = set()
|
||
|
b_idx = set()
|
||
|
|
||
|
def inner(invalid, limit):
|
||
|
limit = min(limit, N)
|
||
|
windowed = _rolling_window(invalid, limit + 1).all(1)
|
||
|
idx = set(np.where(windowed)[0] + limit) | set(
|
||
|
np.where((~invalid[: limit + 1]).cumsum() == 0)[0]
|
||
|
)
|
||
|
return idx
|
||
|
|
||
|
if fw_limit is not None:
|
||
|
|
||
|
if fw_limit == 0:
|
||
|
f_idx = set(np.where(invalid)[0])
|
||
|
else:
|
||
|
f_idx = inner(invalid, fw_limit)
|
||
|
|
||
|
if bw_limit is not None:
|
||
|
|
||
|
if bw_limit == 0:
|
||
|
# then we don't even need to care about backwards
|
||
|
# just use forwards
|
||
|
return f_idx
|
||
|
else:
|
||
|
b_idx_inv = list(inner(invalid[::-1], bw_limit))
|
||
|
b_idx = set(N - 1 - np.asarray(b_idx_inv))
|
||
|
if fw_limit == 0:
|
||
|
return b_idx
|
||
|
|
||
|
return f_idx & b_idx
|
||
|
|
||
|
|
||
|
def _rolling_window(a: np.ndarray, window: int):
|
||
|
"""
|
||
|
[True, True, False, True, False], 2 ->
|
||
|
|
||
|
[
|
||
|
[True, True],
|
||
|
[True, False],
|
||
|
[False, True],
|
||
|
[True, False],
|
||
|
]
|
||
|
"""
|
||
|
# https://stackoverflow.com/a/6811241
|
||
|
shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
|
||
|
strides = a.strides + (a.strides[-1],)
|
||
|
return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
|