148 lines
4.3 KiB
Python
148 lines
4.3 KiB
Python
|
import sys
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas.compat import IS64, PYPY
|
||
|
|
||
|
from pandas.core.dtypes.common import is_categorical_dtype, is_object_dtype
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import DataFrame, Index, Series
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"op_name, op",
|
||
|
[
|
||
|
("add", "+"),
|
||
|
("sub", "-"),
|
||
|
("mul", "*"),
|
||
|
("mod", "%"),
|
||
|
("pow", "**"),
|
||
|
("truediv", "/"),
|
||
|
("floordiv", "//"),
|
||
|
],
|
||
|
)
|
||
|
@pytest.mark.parametrize("klass", [Series, DataFrame])
|
||
|
def test_binary_ops_docstring(klass, op_name, op):
|
||
|
# not using the all_arithmetic_functions fixture with _get_opstr
|
||
|
# as _get_opstr is used internally in the dynamic implementation of the docstring
|
||
|
operand1 = klass.__name__.lower()
|
||
|
operand2 = "other"
|
||
|
expected_str = " ".join([operand1, op, operand2])
|
||
|
assert expected_str in getattr(klass, op_name).__doc__
|
||
|
|
||
|
# reverse version of the binary ops
|
||
|
expected_str = " ".join([operand2, op, operand1])
|
||
|
assert expected_str in getattr(klass, "r" + op_name).__doc__
|
||
|
|
||
|
|
||
|
def test_ndarray_compat_properties(index_or_series_obj):
|
||
|
obj = index_or_series_obj
|
||
|
|
||
|
# Check that we work.
|
||
|
for p in ["shape", "dtype", "T", "nbytes"]:
|
||
|
assert getattr(obj, p, None) is not None
|
||
|
|
||
|
# deprecated properties
|
||
|
for p in ["strides", "itemsize", "base", "data"]:
|
||
|
assert not hasattr(obj, p)
|
||
|
|
||
|
msg = "can only convert an array of size 1 to a Python scalar"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
obj.item() # len > 1
|
||
|
|
||
|
assert obj.ndim == 1
|
||
|
assert obj.size == len(obj)
|
||
|
|
||
|
assert Index([1]).item() == 1
|
||
|
assert Series([1]).item() == 1
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif(PYPY, reason="not relevant for PyPy")
|
||
|
def test_memory_usage(index_or_series_obj):
|
||
|
obj = index_or_series_obj
|
||
|
|
||
|
res = obj.memory_usage()
|
||
|
res_deep = obj.memory_usage(deep=True)
|
||
|
|
||
|
is_object = is_object_dtype(obj) or (
|
||
|
isinstance(obj, Series) and is_object_dtype(obj.index)
|
||
|
)
|
||
|
is_categorical = is_categorical_dtype(obj.dtype) or (
|
||
|
isinstance(obj, Series) and is_categorical_dtype(obj.index.dtype)
|
||
|
)
|
||
|
|
||
|
if len(obj) == 0:
|
||
|
if isinstance(obj, Index):
|
||
|
expected = 0
|
||
|
else:
|
||
|
expected = 108 if IS64 else 64
|
||
|
assert res_deep == res == expected
|
||
|
elif is_object or is_categorical:
|
||
|
# only deep will pick them up
|
||
|
assert res_deep > res
|
||
|
else:
|
||
|
assert res == res_deep
|
||
|
|
||
|
# sys.getsizeof will call the .memory_usage with
|
||
|
# deep=True, and add on some GC overhead
|
||
|
diff = res_deep - sys.getsizeof(obj)
|
||
|
assert abs(diff) < 100
|
||
|
|
||
|
|
||
|
def test_memory_usage_components_series(series_with_simple_index):
|
||
|
series = series_with_simple_index
|
||
|
total_usage = series.memory_usage(index=True)
|
||
|
non_index_usage = series.memory_usage(index=False)
|
||
|
index_usage = series.index.memory_usage()
|
||
|
assert total_usage == non_index_usage + index_usage
|
||
|
|
||
|
|
||
|
def test_memory_usage_components_narrow_series(narrow_series):
|
||
|
series = narrow_series
|
||
|
total_usage = series.memory_usage(index=True)
|
||
|
non_index_usage = series.memory_usage(index=False)
|
||
|
index_usage = series.index.memory_usage()
|
||
|
assert total_usage == non_index_usage + index_usage
|
||
|
|
||
|
|
||
|
def test_searchsorted(index_or_series_obj):
|
||
|
# numpy.searchsorted calls obj.searchsorted under the hood.
|
||
|
# See gh-12238
|
||
|
obj = index_or_series_obj
|
||
|
|
||
|
if isinstance(obj, pd.MultiIndex):
|
||
|
# See gh-14833
|
||
|
pytest.skip("np.searchsorted doesn't work on pd.MultiIndex")
|
||
|
|
||
|
max_obj = max(obj, default=0)
|
||
|
index = np.searchsorted(obj, max_obj)
|
||
|
assert 0 <= index <= len(obj)
|
||
|
|
||
|
index = np.searchsorted(obj, max_obj, sorter=range(len(obj)))
|
||
|
assert 0 <= index <= len(obj)
|
||
|
|
||
|
|
||
|
def test_access_by_position(index):
|
||
|
|
||
|
if len(index) == 0:
|
||
|
pytest.skip("Test doesn't make sense on empty data")
|
||
|
elif isinstance(index, pd.MultiIndex):
|
||
|
pytest.skip("Can't instantiate Series from MultiIndex")
|
||
|
|
||
|
series = Series(index)
|
||
|
assert index[0] == series.iloc[0]
|
||
|
assert index[5] == series.iloc[5]
|
||
|
assert index[-1] == series.iloc[-1]
|
||
|
|
||
|
size = len(index)
|
||
|
assert index[-1] == index[size - 1]
|
||
|
|
||
|
msg = f"index {size} is out of bounds for axis 0 with size {size}"
|
||
|
with pytest.raises(IndexError, match=msg):
|
||
|
index[size]
|
||
|
msg = "single positional indexer is out-of-bounds"
|
||
|
with pytest.raises(IndexError, match=msg):
|
||
|
series.iloc[size]
|