306 lines
9.2 KiB
Python
306 lines
9.2 KiB
Python
|
from datetime import datetime, timedelta
|
||
|
from io import StringIO
|
||
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas import (
|
||
|
Categorical,
|
||
|
DataFrame,
|
||
|
MultiIndex,
|
||
|
NaT,
|
||
|
PeriodIndex,
|
||
|
Series,
|
||
|
Timestamp,
|
||
|
date_range,
|
||
|
option_context,
|
||
|
period_range,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
import pandas.io.formats.format as fmt
|
||
|
|
||
|
|
||
|
class TestDataFrameReprInfoEtc:
|
||
|
def test_repr_unicode_level_names(self, frame_or_series):
|
||
|
index = MultiIndex.from_tuples([(0, 0), (1, 1)], names=["\u0394", "i1"])
|
||
|
|
||
|
obj = DataFrame(np.random.randn(2, 4), index=index)
|
||
|
if frame_or_series is Series:
|
||
|
obj = obj[0]
|
||
|
repr(obj)
|
||
|
|
||
|
def test_assign_index_sequences(self):
|
||
|
# GH#2200
|
||
|
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}).set_index(
|
||
|
["a", "b"]
|
||
|
)
|
||
|
index = list(df.index)
|
||
|
index[0] = ("faz", "boo")
|
||
|
df.index = index
|
||
|
repr(df)
|
||
|
|
||
|
# this travels an improper code path
|
||
|
index[0] = ["faz", "boo"]
|
||
|
df.index = index
|
||
|
repr(df)
|
||
|
|
||
|
def test_repr_with_mi_nat(self, float_string_frame):
|
||
|
df = DataFrame({"X": [1, 2]}, index=[[NaT, Timestamp("20130101")], ["a", "b"]])
|
||
|
result = repr(df)
|
||
|
expected = " X\nNaT a 1\n2013-01-01 b 2"
|
||
|
assert result == expected
|
||
|
|
||
|
def test_multiindex_na_repr(self):
|
||
|
# only an issue with long columns
|
||
|
df3 = DataFrame(
|
||
|
{
|
||
|
"A" * 30: {("A", "A0006000", "nuit"): "A0006000"},
|
||
|
"B" * 30: {("A", "A0006000", "nuit"): np.nan},
|
||
|
"C" * 30: {("A", "A0006000", "nuit"): np.nan},
|
||
|
"D" * 30: {("A", "A0006000", "nuit"): np.nan},
|
||
|
"E" * 30: {("A", "A0006000", "nuit"): "A"},
|
||
|
"F" * 30: {("A", "A0006000", "nuit"): np.nan},
|
||
|
}
|
||
|
)
|
||
|
|
||
|
idf = df3.set_index(["A" * 30, "C" * 30])
|
||
|
repr(idf)
|
||
|
|
||
|
def test_repr_name_coincide(self):
|
||
|
index = MultiIndex.from_tuples(
|
||
|
[("a", 0, "foo"), ("b", 1, "bar")], names=["a", "b", "c"]
|
||
|
)
|
||
|
|
||
|
df = DataFrame({"value": [0, 1]}, index=index)
|
||
|
|
||
|
lines = repr(df).split("\n")
|
||
|
assert lines[2].startswith("a 0 foo")
|
||
|
|
||
|
def test_repr_to_string(
|
||
|
self,
|
||
|
multiindex_year_month_day_dataframe_random_data,
|
||
|
multiindex_dataframe_random_data,
|
||
|
):
|
||
|
ymd = multiindex_year_month_day_dataframe_random_data
|
||
|
frame = multiindex_dataframe_random_data
|
||
|
|
||
|
repr(frame)
|
||
|
repr(ymd)
|
||
|
repr(frame.T)
|
||
|
repr(ymd.T)
|
||
|
|
||
|
buf = StringIO()
|
||
|
frame.to_string(buf=buf)
|
||
|
ymd.to_string(buf=buf)
|
||
|
frame.T.to_string(buf=buf)
|
||
|
ymd.T.to_string(buf=buf)
|
||
|
|
||
|
def test_repr_empty(self):
|
||
|
# empty
|
||
|
repr(DataFrame())
|
||
|
|
||
|
# empty with index
|
||
|
frame = DataFrame(index=np.arange(1000))
|
||
|
repr(frame)
|
||
|
|
||
|
def test_repr_mixed(self, float_string_frame):
|
||
|
buf = StringIO()
|
||
|
|
||
|
# mixed
|
||
|
repr(float_string_frame)
|
||
|
float_string_frame.info(verbose=False, buf=buf)
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
def test_repr_mixed_big(self):
|
||
|
# big mixed
|
||
|
biggie = DataFrame(
|
||
|
{"A": np.random.randn(200), "B": tm.makeStringIndex(200)}, index=range(200)
|
||
|
)
|
||
|
biggie.loc[:20, "A"] = np.nan
|
||
|
biggie.loc[:20, "B"] = np.nan
|
||
|
|
||
|
repr(biggie)
|
||
|
|
||
|
def test_repr(self, float_frame):
|
||
|
buf = StringIO()
|
||
|
|
||
|
# small one
|
||
|
repr(float_frame)
|
||
|
float_frame.info(verbose=False, buf=buf)
|
||
|
|
||
|
# even smaller
|
||
|
float_frame.reindex(columns=["A"]).info(verbose=False, buf=buf)
|
||
|
float_frame.reindex(columns=["A", "B"]).info(verbose=False, buf=buf)
|
||
|
|
||
|
# exhausting cases in DataFrame.info
|
||
|
|
||
|
# columns but no index
|
||
|
no_index = DataFrame(columns=[0, 1, 3])
|
||
|
repr(no_index)
|
||
|
|
||
|
# no columns or index
|
||
|
DataFrame().info(buf=buf)
|
||
|
|
||
|
df = DataFrame(["a\n\r\tb"], columns=["a\n\r\td"], index=["a\n\r\tf"])
|
||
|
assert "\t" not in repr(df)
|
||
|
assert "\r" not in repr(df)
|
||
|
assert "a\n" not in repr(df)
|
||
|
|
||
|
def test_repr_dimensions(self):
|
||
|
df = DataFrame([[1, 2], [3, 4]])
|
||
|
with option_context("display.show_dimensions", True):
|
||
|
assert "2 rows x 2 columns" in repr(df)
|
||
|
|
||
|
with option_context("display.show_dimensions", False):
|
||
|
assert "2 rows x 2 columns" not in repr(df)
|
||
|
|
||
|
with option_context("display.show_dimensions", "truncate"):
|
||
|
assert "2 rows x 2 columns" not in repr(df)
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
def test_repr_big(self):
|
||
|
# big one
|
||
|
biggie = DataFrame(np.zeros((200, 4)), columns=range(4), index=range(200))
|
||
|
repr(biggie)
|
||
|
|
||
|
def test_repr_unsortable(self, float_frame):
|
||
|
# columns are not sortable
|
||
|
|
||
|
warn_filters = warnings.filters
|
||
|
warnings.filterwarnings("ignore", category=FutureWarning, module=".*format")
|
||
|
|
||
|
unsortable = DataFrame(
|
||
|
{
|
||
|
"foo": [1] * 50,
|
||
|
datetime.today(): [1] * 50,
|
||
|
"bar": ["bar"] * 50,
|
||
|
datetime.today() + timedelta(1): ["bar"] * 50,
|
||
|
},
|
||
|
index=np.arange(50),
|
||
|
)
|
||
|
repr(unsortable)
|
||
|
|
||
|
fmt.set_option("display.precision", 3, "display.column_space", 10)
|
||
|
repr(float_frame)
|
||
|
|
||
|
fmt.set_option("display.max_rows", 10, "display.max_columns", 2)
|
||
|
repr(float_frame)
|
||
|
|
||
|
fmt.set_option("display.max_rows", 1000, "display.max_columns", 1000)
|
||
|
repr(float_frame)
|
||
|
|
||
|
tm.reset_display_options()
|
||
|
|
||
|
warnings.filters = warn_filters
|
||
|
|
||
|
def test_repr_unicode(self):
|
||
|
uval = "\u03c3\u03c3\u03c3\u03c3"
|
||
|
|
||
|
df = DataFrame({"A": [uval, uval]})
|
||
|
|
||
|
result = repr(df)
|
||
|
ex_top = " A"
|
||
|
assert result.split("\n")[0].rstrip() == ex_top
|
||
|
|
||
|
df = DataFrame({"A": [uval, uval]})
|
||
|
result = repr(df)
|
||
|
assert result.split("\n")[0].rstrip() == ex_top
|
||
|
|
||
|
def test_unicode_string_with_unicode(self):
|
||
|
df = DataFrame({"A": ["\u05d0"]})
|
||
|
str(df)
|
||
|
|
||
|
def test_repr_unicode_columns(self):
|
||
|
df = DataFrame({"\u05d0": [1, 2, 3], "\u05d1": [4, 5, 6], "c": [7, 8, 9]})
|
||
|
repr(df.columns) # should not raise UnicodeDecodeError
|
||
|
|
||
|
def test_str_to_bytes_raises(self):
|
||
|
# GH 26447
|
||
|
df = DataFrame({"A": ["abc"]})
|
||
|
msg = "^'str' object cannot be interpreted as an integer$"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
bytes(df)
|
||
|
|
||
|
def test_very_wide_info_repr(self):
|
||
|
df = DataFrame(np.random.randn(10, 20), columns=tm.rands_array(10, 20))
|
||
|
repr(df)
|
||
|
|
||
|
def test_repr_column_name_unicode_truncation_bug(self):
|
||
|
# #1906
|
||
|
df = DataFrame(
|
||
|
{
|
||
|
"Id": [7117434],
|
||
|
"StringCol": (
|
||
|
"Is it possible to modify drop plot code"
|
||
|
"so that the output graph is displayed "
|
||
|
"in iphone simulator, Is it possible to "
|
||
|
"modify drop plot code so that the "
|
||
|
"output graph is \xe2\x80\xa8displayed "
|
||
|
"in iphone simulator.Now we are adding "
|
||
|
"the CSV file externally. I want to Call "
|
||
|
"the File through the code.."
|
||
|
),
|
||
|
}
|
||
|
)
|
||
|
|
||
|
with option_context("display.max_columns", 20):
|
||
|
assert "StringCol" in repr(df)
|
||
|
|
||
|
def test_latex_repr(self):
|
||
|
result = r"""\begin{tabular}{llll}
|
||
|
\toprule
|
||
|
{} & 0 & 1 & 2 \\
|
||
|
\midrule
|
||
|
0 & $\alpha$ & b & c \\
|
||
|
1 & 1 & 2 & 3 \\
|
||
|
\bottomrule
|
||
|
\end{tabular}
|
||
|
"""
|
||
|
with option_context("display.latex.escape", False, "display.latex.repr", True):
|
||
|
df = DataFrame([[r"$\alpha$", "b", "c"], [1, 2, 3]])
|
||
|
assert result == df._repr_latex_()
|
||
|
|
||
|
# GH 12182
|
||
|
assert df._repr_latex_() is None
|
||
|
|
||
|
def test_repr_categorical_dates_periods(self):
|
||
|
# normal DataFrame
|
||
|
dt = date_range("2011-01-01 09:00", freq="H", periods=5, tz="US/Eastern")
|
||
|
p = period_range("2011-01", freq="M", periods=5)
|
||
|
df = DataFrame({"dt": dt, "p": p})
|
||
|
exp = """ dt p
|
||
|
0 2011-01-01 09:00:00-05:00 2011-01
|
||
|
1 2011-01-01 10:00:00-05:00 2011-02
|
||
|
2 2011-01-01 11:00:00-05:00 2011-03
|
||
|
3 2011-01-01 12:00:00-05:00 2011-04
|
||
|
4 2011-01-01 13:00:00-05:00 2011-05"""
|
||
|
|
||
|
assert repr(df) == exp
|
||
|
|
||
|
df2 = DataFrame({"dt": Categorical(dt), "p": Categorical(p)})
|
||
|
assert repr(df2) == exp
|
||
|
|
||
|
@pytest.mark.parametrize("arg", [np.datetime64, np.timedelta64])
|
||
|
@pytest.mark.parametrize(
|
||
|
"box, expected",
|
||
|
[[Series, "0 NaT\ndtype: object"], [DataFrame, " 0\n0 NaT"]],
|
||
|
)
|
||
|
def test_repr_np_nat_with_object(self, arg, box, expected):
|
||
|
# GH 25445
|
||
|
result = repr(box([arg("NaT")], dtype=object))
|
||
|
assert result == expected
|
||
|
|
||
|
def test_frame_datetime64_pre1900_repr(self):
|
||
|
df = DataFrame({"year": date_range("1/1/1700", periods=50, freq="A-DEC")})
|
||
|
# it works!
|
||
|
repr(df)
|
||
|
|
||
|
def test_frame_to_string_with_periodindex(self):
|
||
|
index = PeriodIndex(["2011-1", "2011-2", "2011-3"], freq="M")
|
||
|
frame = DataFrame(np.random.randn(3, 4), index=index)
|
||
|
|
||
|
# it works!
|
||
|
frame.to_string()
|