359 lines
14 KiB
Python
359 lines
14 KiB
Python
|
"""Incremental Principal Components Analysis."""
|
||
|
|
||
|
# Author: Kyle Kastner <kastnerkyle@gmail.com>
|
||
|
# Giorgio Patrini
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy import linalg, sparse
|
||
|
|
||
|
from ._base import _BasePCA
|
||
|
from ..utils import gen_batches
|
||
|
from ..utils.extmath import svd_flip, _incremental_mean_and_var
|
||
|
from ..utils.validation import _deprecate_positional_args
|
||
|
|
||
|
|
||
|
class IncrementalPCA(_BasePCA):
|
||
|
"""Incremental principal components analysis (IPCA).
|
||
|
|
||
|
Linear dimensionality reduction using Singular Value Decomposition of
|
||
|
the data, keeping only the most significant singular vectors to
|
||
|
project the data to a lower dimensional space. The input data is centered
|
||
|
but not scaled for each feature before applying the SVD.
|
||
|
|
||
|
Depending on the size of the input data, this algorithm can be much more
|
||
|
memory efficient than a PCA, and allows sparse input.
|
||
|
|
||
|
This algorithm has constant memory complexity, on the order
|
||
|
of ``batch_size * n_features``, enabling use of np.memmap files without
|
||
|
loading the entire file into memory. For sparse matrices, the input
|
||
|
is converted to dense in batches (in order to be able to subtract the
|
||
|
mean) which avoids storing the entire dense matrix at any one time.
|
||
|
|
||
|
The computational overhead of each SVD is
|
||
|
``O(batch_size * n_features ** 2)``, but only 2 * batch_size samples
|
||
|
remain in memory at a time. There will be ``n_samples / batch_size`` SVD
|
||
|
computations to get the principal components, versus 1 large SVD of
|
||
|
complexity ``O(n_samples * n_features ** 2)`` for PCA.
|
||
|
|
||
|
Read more in the :ref:`User Guide <IncrementalPCA>`.
|
||
|
|
||
|
.. versionadded:: 0.16
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n_components : int, default=None
|
||
|
Number of components to keep. If ``n_components`` is ``None``,
|
||
|
then ``n_components`` is set to ``min(n_samples, n_features)``.
|
||
|
|
||
|
whiten : bool, default=False
|
||
|
When True (False by default) the ``components_`` vectors are divided
|
||
|
by ``n_samples`` times ``components_`` to ensure uncorrelated outputs
|
||
|
with unit component-wise variances.
|
||
|
|
||
|
Whitening will remove some information from the transformed signal
|
||
|
(the relative variance scales of the components) but can sometimes
|
||
|
improve the predictive accuracy of the downstream estimators by
|
||
|
making data respect some hard-wired assumptions.
|
||
|
|
||
|
copy : bool, default=True
|
||
|
If False, X will be overwritten. ``copy=False`` can be used to
|
||
|
save memory but is unsafe for general use.
|
||
|
|
||
|
batch_size : int, default=None
|
||
|
The number of samples to use for each batch. Only used when calling
|
||
|
``fit``. If ``batch_size`` is ``None``, then ``batch_size``
|
||
|
is inferred from the data and set to ``5 * n_features``, to provide a
|
||
|
balance between approximation accuracy and memory consumption.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
components_ : ndarray of shape (n_components, n_features)
|
||
|
Components with maximum variance.
|
||
|
|
||
|
explained_variance_ : ndarray of shape (n_components,)
|
||
|
Variance explained by each of the selected components.
|
||
|
|
||
|
explained_variance_ratio_ : ndarray of shape (n_components,)
|
||
|
Percentage of variance explained by each of the selected components.
|
||
|
If all components are stored, the sum of explained variances is equal
|
||
|
to 1.0.
|
||
|
|
||
|
singular_values_ : ndarray of shape (n_components,)
|
||
|
The singular values corresponding to each of the selected components.
|
||
|
The singular values are equal to the 2-norms of the ``n_components``
|
||
|
variables in the lower-dimensional space.
|
||
|
|
||
|
mean_ : ndarray of shape (n_features,)
|
||
|
Per-feature empirical mean, aggregate over calls to ``partial_fit``.
|
||
|
|
||
|
var_ : ndarray of shape (n_features,)
|
||
|
Per-feature empirical variance, aggregate over calls to
|
||
|
``partial_fit``.
|
||
|
|
||
|
noise_variance_ : float
|
||
|
The estimated noise covariance following the Probabilistic PCA model
|
||
|
from Tipping and Bishop 1999. See "Pattern Recognition and
|
||
|
Machine Learning" by C. Bishop, 12.2.1 p. 574 or
|
||
|
http://www.miketipping.com/papers/met-mppca.pdf.
|
||
|
|
||
|
n_components_ : int
|
||
|
The estimated number of components. Relevant when
|
||
|
``n_components=None``.
|
||
|
|
||
|
n_samples_seen_ : int
|
||
|
The number of samples processed by the estimator. Will be reset on
|
||
|
new calls to fit, but increments across ``partial_fit`` calls.
|
||
|
|
||
|
batch_size_ : int
|
||
|
Inferred batch size from ``batch_size``.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.datasets import load_digits
|
||
|
>>> from sklearn.decomposition import IncrementalPCA
|
||
|
>>> from scipy import sparse
|
||
|
>>> X, _ = load_digits(return_X_y=True)
|
||
|
>>> transformer = IncrementalPCA(n_components=7, batch_size=200)
|
||
|
>>> # either partially fit on smaller batches of data
|
||
|
>>> transformer.partial_fit(X[:100, :])
|
||
|
IncrementalPCA(batch_size=200, n_components=7)
|
||
|
>>> # or let the fit function itself divide the data into batches
|
||
|
>>> X_sparse = sparse.csr_matrix(X)
|
||
|
>>> X_transformed = transformer.fit_transform(X_sparse)
|
||
|
>>> X_transformed.shape
|
||
|
(1797, 7)
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Implements the incremental PCA model from:
|
||
|
*D. Ross, J. Lim, R. Lin, M. Yang, Incremental Learning for Robust Visual
|
||
|
Tracking, International Journal of Computer Vision, Volume 77, Issue 1-3,
|
||
|
pp. 125-141, May 2008.*
|
||
|
See https://www.cs.toronto.edu/~dross/ivt/RossLimLinYang_ijcv.pdf
|
||
|
|
||
|
This model is an extension of the Sequential Karhunen-Loeve Transform from:
|
||
|
*A. Levy and M. Lindenbaum, Sequential Karhunen-Loeve Basis Extraction and
|
||
|
its Application to Images, IEEE Transactions on Image Processing, Volume 9,
|
||
|
Number 8, pp. 1371-1374, August 2000.*
|
||
|
See https://www.cs.technion.ac.il/~mic/doc/skl-ip.pdf
|
||
|
|
||
|
We have specifically abstained from an optimization used by authors of both
|
||
|
papers, a QR decomposition used in specific situations to reduce the
|
||
|
algorithmic complexity of the SVD. The source for this technique is
|
||
|
*Matrix Computations, Third Edition, G. Holub and C. Van Loan, Chapter 5,
|
||
|
section 5.4.4, pp 252-253.*. This technique has been omitted because it is
|
||
|
advantageous only when decomposing a matrix with ``n_samples`` (rows)
|
||
|
>= 5/3 * ``n_features`` (columns), and hurts the readability of the
|
||
|
implemented algorithm. This would be a good opportunity for future
|
||
|
optimization, if it is deemed necessary.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
D. Ross, J. Lim, R. Lin, M. Yang. Incremental Learning for Robust Visual
|
||
|
Tracking, International Journal of Computer Vision, Volume 77,
|
||
|
Issue 1-3, pp. 125-141, May 2008.
|
||
|
|
||
|
G. Golub and C. Van Loan. Matrix Computations, Third Edition, Chapter 5,
|
||
|
Section 5.4.4, pp. 252-253.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
PCA
|
||
|
KernelPCA
|
||
|
SparsePCA
|
||
|
TruncatedSVD
|
||
|
"""
|
||
|
@_deprecate_positional_args
|
||
|
def __init__(self, n_components=None, *, whiten=False, copy=True,
|
||
|
batch_size=None):
|
||
|
self.n_components = n_components
|
||
|
self.whiten = whiten
|
||
|
self.copy = copy
|
||
|
self.batch_size = batch_size
|
||
|
|
||
|
def fit(self, X, y=None):
|
||
|
"""Fit the model with X, using minibatches of size batch_size.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
Training data, where n_samples is the number of samples and
|
||
|
n_features is the number of features.
|
||
|
|
||
|
y : Ignored
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Returns the instance itself.
|
||
|
"""
|
||
|
self.components_ = None
|
||
|
self.n_samples_seen_ = 0
|
||
|
self.mean_ = .0
|
||
|
self.var_ = .0
|
||
|
self.singular_values_ = None
|
||
|
self.explained_variance_ = None
|
||
|
self.explained_variance_ratio_ = None
|
||
|
self.noise_variance_ = None
|
||
|
|
||
|
X = self._validate_data(X, accept_sparse=['csr', 'csc', 'lil'],
|
||
|
copy=self.copy, dtype=[np.float64, np.float32])
|
||
|
n_samples, n_features = X.shape
|
||
|
|
||
|
if self.batch_size is None:
|
||
|
self.batch_size_ = 5 * n_features
|
||
|
else:
|
||
|
self.batch_size_ = self.batch_size
|
||
|
|
||
|
for batch in gen_batches(n_samples, self.batch_size_,
|
||
|
min_batch_size=self.n_components or 0):
|
||
|
X_batch = X[batch]
|
||
|
if sparse.issparse(X_batch):
|
||
|
X_batch = X_batch.toarray()
|
||
|
self.partial_fit(X_batch, check_input=False)
|
||
|
|
||
|
return self
|
||
|
|
||
|
def partial_fit(self, X, y=None, check_input=True):
|
||
|
"""Incremental fit with X. All of X is processed as a single batch.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like of shape (n_samples, n_features)
|
||
|
Training data, where n_samples is the number of samples and
|
||
|
n_features is the number of features.
|
||
|
|
||
|
check_input : bool, default=True
|
||
|
Run check_array on X.
|
||
|
|
||
|
y : Ignored
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Returns the instance itself.
|
||
|
"""
|
||
|
first_pass = not hasattr(self, "components_")
|
||
|
if check_input:
|
||
|
if sparse.issparse(X):
|
||
|
raise TypeError(
|
||
|
"IncrementalPCA.partial_fit does not support "
|
||
|
"sparse input. Either convert data to dense "
|
||
|
"or use IncrementalPCA.fit to do so in batches.")
|
||
|
X = self._validate_data(
|
||
|
X, copy=self.copy, dtype=[np.float64, np.float32],
|
||
|
reset=first_pass)
|
||
|
n_samples, n_features = X.shape
|
||
|
if first_pass:
|
||
|
self.components_ = None
|
||
|
|
||
|
if self.n_components is None:
|
||
|
if self.components_ is None:
|
||
|
self.n_components_ = min(n_samples, n_features)
|
||
|
else:
|
||
|
self.n_components_ = self.components_.shape[0]
|
||
|
elif not 1 <= self.n_components <= n_features:
|
||
|
raise ValueError("n_components=%r invalid for n_features=%d, need "
|
||
|
"more rows than columns for IncrementalPCA "
|
||
|
"processing" % (self.n_components, n_features))
|
||
|
elif not self.n_components <= n_samples:
|
||
|
raise ValueError("n_components=%r must be less or equal to "
|
||
|
"the batch number of samples "
|
||
|
"%d." % (self.n_components, n_samples))
|
||
|
else:
|
||
|
self.n_components_ = self.n_components
|
||
|
|
||
|
if (self.components_ is not None) and (self.components_.shape[0] !=
|
||
|
self.n_components_):
|
||
|
raise ValueError("Number of input features has changed from %i "
|
||
|
"to %i between calls to partial_fit! Try "
|
||
|
"setting n_components to a fixed value." %
|
||
|
(self.components_.shape[0], self.n_components_))
|
||
|
|
||
|
# This is the first partial_fit
|
||
|
if not hasattr(self, 'n_samples_seen_'):
|
||
|
self.n_samples_seen_ = 0
|
||
|
self.mean_ = .0
|
||
|
self.var_ = .0
|
||
|
|
||
|
# Update stats - they are 0 if this is the first step
|
||
|
col_mean, col_var, n_total_samples = \
|
||
|
_incremental_mean_and_var(
|
||
|
X, last_mean=self.mean_, last_variance=self.var_,
|
||
|
last_sample_count=np.repeat(self.n_samples_seen_, X.shape[1]))
|
||
|
n_total_samples = n_total_samples[0]
|
||
|
|
||
|
# Whitening
|
||
|
if self.n_samples_seen_ == 0:
|
||
|
# If it is the first step, simply whiten X
|
||
|
X -= col_mean
|
||
|
else:
|
||
|
col_batch_mean = np.mean(X, axis=0)
|
||
|
X -= col_batch_mean
|
||
|
# Build matrix of combined previous basis and new data
|
||
|
mean_correction = \
|
||
|
np.sqrt((self.n_samples_seen_ / n_total_samples) *
|
||
|
n_samples) * (self.mean_ - col_batch_mean)
|
||
|
X = np.vstack((self.singular_values_.reshape((-1, 1)) *
|
||
|
self.components_, X, mean_correction))
|
||
|
|
||
|
U, S, Vt = linalg.svd(X, full_matrices=False, check_finite=False)
|
||
|
U, Vt = svd_flip(U, Vt, u_based_decision=False)
|
||
|
explained_variance = S ** 2 / (n_total_samples - 1)
|
||
|
explained_variance_ratio = S ** 2 / np.sum(col_var * n_total_samples)
|
||
|
|
||
|
self.n_samples_seen_ = n_total_samples
|
||
|
self.components_ = Vt[:self.n_components_]
|
||
|
self.singular_values_ = S[:self.n_components_]
|
||
|
self.mean_ = col_mean
|
||
|
self.var_ = col_var
|
||
|
self.explained_variance_ = explained_variance[:self.n_components_]
|
||
|
self.explained_variance_ratio_ = \
|
||
|
explained_variance_ratio[:self.n_components_]
|
||
|
if self.n_components_ < n_features:
|
||
|
self.noise_variance_ = \
|
||
|
explained_variance[self.n_components_:].mean()
|
||
|
else:
|
||
|
self.noise_variance_ = 0.
|
||
|
return self
|
||
|
|
||
|
def transform(self, X):
|
||
|
"""Apply dimensionality reduction to X.
|
||
|
|
||
|
X is projected on the first principal components previously extracted
|
||
|
from a training set, using minibatches of size batch_size if X is
|
||
|
sparse.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
New data, where n_samples is the number of samples
|
||
|
and n_features is the number of features.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
X_new : ndarray of shape (n_samples, n_components)
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from sklearn.decomposition import IncrementalPCA
|
||
|
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2],
|
||
|
... [1, 1], [2, 1], [3, 2]])
|
||
|
>>> ipca = IncrementalPCA(n_components=2, batch_size=3)
|
||
|
>>> ipca.fit(X)
|
||
|
IncrementalPCA(batch_size=3, n_components=2)
|
||
|
>>> ipca.transform(X) # doctest: +SKIP
|
||
|
"""
|
||
|
if sparse.issparse(X):
|
||
|
n_samples = X.shape[0]
|
||
|
output = []
|
||
|
for batch in gen_batches(n_samples, self.batch_size_,
|
||
|
min_batch_size=self.n_components or 0):
|
||
|
output.append(super().transform(X[batch].toarray()))
|
||
|
return np.vstack(output)
|
||
|
else:
|
||
|
return super().transform(X)
|