projektAI/venv/Lib/site-packages/mlxtend/_base/_multilayer.py

68 lines
2.3 KiB
Python
Raw Normal View History

2021-06-06 22:13:05 +02:00
# Sebastian Raschka 2014-2020
# mlxtend Machine Learning Library Extensions
#
# Base Clusteer (Clutering Parent Class)
# Author: Sebastian Raschka <sebastianraschka.com>
#
# License: BSD 3 clause
import numpy as np
class _MultiLayer(object):
def __init__(self):
pass
def _layermapping(self, n_features, n_classes, hidden_layers):
"""Creates a dictionaries of layer dimensions for weights and biases.
For example, given
`n_features=10`, `n_classes=10`, and `hidden_layers=[8, 7, 6]`:
biases =
{1: [[8], 'n_hidden_1'],
2: [[7], 'n_hidden_2'],
3: [[6], 'n_hidden_3'],
'out': [[10], 'n_classes']
}
weights =
{1: [[10, 8], 'n_features, n_hidden_1'],
2: [[8, 7], 'n_hidden_1, n_hidden_2'],
3: [[7, 6], 'n_hidden_2, n_hidden_3'],
'out': [[6, 10], 'n_hidden_3, n_classes']
}
"""
weights = {'1': [[n_features, hidden_layers[0]],
'n_features, n_hidden_1'],
'out': [[hidden_layers[-1], n_classes],
'n_hidden_%d, n_classes' % len(hidden_layers)]}
biases = {'1': [[hidden_layers[0]], 'n_hidden_1'],
'out': [[n_classes], 'n_classes']}
if len(hidden_layers) > 1:
for i, h in enumerate(hidden_layers[1:]):
layer = i + 2
weights[str(layer)] = [[weights[str(layer - 1)][0][1], h],
'n_hidden_%d, n_hidden_%d'
% (layer - 1, layer)]
biases[str(layer)] = [[h], 'n_hidden_%d' % layer]
return weights, biases
def _init_params_from_layermapping(self, weight_maps, bias_maps,
random_seed=None):
rgen = np.random.RandomState(random_seed)
weights, biases = {}, {}
rgen = np.random.RandomState(random_seed)
weights, biases = {}, {}
for kw, kb in zip(sorted(weight_maps), sorted(bias_maps)):
weights[kw] = rgen.normal(loc=0.0,
scale=0.01,
size=weight_maps[kw][0])
biases[kb] = np.zeros(shape=bias_maps[kb][0])
return weights, biases