projektAI/venv/Lib/site-packages/mlxtend/plotting/checkerboard.py

104 lines
3.2 KiB
Python
Raw Normal View History

2021-06-06 22:13:05 +02:00
# Sebastian Raschka 2014-2020
# mlxtend Machine Learning Library Extensions
#
# Implementation of the mulitnomial logistic regression algorithm for
# classification.
#
# Author: Sebastian Raschka <sebastianraschka.com>
#
# License: BSD 3 clause
from matplotlib.pyplot import subplots
from matplotlib.table import Table
import numpy as np
def checkerboard_plot(ary,
cell_colors=('white', 'black'),
font_colors=('black', 'white'),
fmt='%.1f',
figsize=None,
row_labels=None,
col_labels=None,
fontsize=None):
"""
Plot a checkerboard table / heatmap via matplotlib.
Parameters
-----------
ary : array-like, shape = [n, m]
A 2D Nnumpy array.
cell_colors : tuple or list (default: ('white', 'black'))
Tuple or list containing the two colors of the
checkerboard pattern.
font_colors : tuple or list (default: ('black', 'white'))
Font colors corresponding to the cell colors.
figsize : tuple (default: (2.5, 2.5))
Height and width of the figure
fmt : str (default: '%.1f')
Python string formatter for cell values.
The default '%.1f' results in floats with 1 digit after
the decimal point. Use '%d' to show numbers as integers.
row_labels : list (default: None)
List of the row labels. Uses the array row
indices 0 to n by default.
col_labels : list (default: None)
List of the column labels. Uses the array column
indices 0 to m by default.
fontsize : int (default: None)
Specifies the font size of the checkerboard table.
Uses matplotlib's default if None.
Returns
-----------
fig : matplotlib Figure object.
Examples
-----------
For usage examples, please see
http://rasbt.github.io/mlxtend/user_guide/plotting/checkerboard_plot/
"""
fig, ax = subplots(figsize=figsize)
ax.set_axis_off()
tb = Table(ax, bbox=[0, 0, 1, 1])
n_rows, n_cols = ary.shape
if row_labels is None:
row_labels = np.arange(n_rows)
if col_labels is None:
col_labels = np.arange(n_cols)
width, height = 1.0 / n_cols, 1.0 / n_rows
for (row_idx, col_idx), cell_val in np.ndenumerate(ary):
idx = (col_idx + row_idx) % 2
tb.add_cell(row_idx, col_idx, width, height,
text=fmt % cell_val,
loc='center',
facecolor=cell_colors[idx])
for row_idx, label in enumerate(row_labels):
tb.add_cell(row_idx, -1,
width, height,
text=label, loc='right',
edgecolor='none', facecolor='none')
for col_idx, label in enumerate(col_labels):
tb.add_cell(-1, col_idx,
width, height / 2.,
text=label, loc='center',
edgecolor='none', facecolor='none')
for (row_idx, col_idx), cell_val in np.ndenumerate(ary):
idx = (col_idx + row_idx) % 2
tb._cells[(row_idx, col_idx)]._text.set_color(font_colors[idx])
ax.add_table(tb)
tb.set_fontsize(fontsize)
return fig