314 lines
12 KiB
Python
314 lines
12 KiB
Python
|
from datetime import datetime
|
||
|
import io
|
||
|
import os
|
||
|
from pathlib import Path
|
||
|
|
||
|
import dateutil.parser
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas.errors import EmptyDataError
|
||
|
import pandas.util._test_decorators as td
|
||
|
|
||
|
import pandas as pd
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
# https://github.com/cython/cython/issues/1720
|
||
|
@pytest.mark.filterwarnings("ignore:can't resolve package:ImportWarning")
|
||
|
class TestSAS7BDAT:
|
||
|
@pytest.fixture(autouse=True)
|
||
|
def setup_method(self, datapath):
|
||
|
self.dirpath = datapath("io", "sas", "data")
|
||
|
self.data = []
|
||
|
self.test_ix = [list(range(1, 16)), [16]]
|
||
|
for j in 1, 2:
|
||
|
fname = os.path.join(self.dirpath, f"test_sas7bdat_{j}.csv")
|
||
|
df = pd.read_csv(fname)
|
||
|
epoch = datetime(1960, 1, 1)
|
||
|
t1 = pd.to_timedelta(df["Column4"], unit="d")
|
||
|
df["Column4"] = epoch + t1
|
||
|
t2 = pd.to_timedelta(df["Column12"], unit="d")
|
||
|
df["Column12"] = epoch + t2
|
||
|
for k in range(df.shape[1]):
|
||
|
col = df.iloc[:, k]
|
||
|
if col.dtype == np.int64:
|
||
|
df.iloc[:, k] = df.iloc[:, k].astype(np.float64)
|
||
|
self.data.append(df)
|
||
|
|
||
|
def test_from_file(self):
|
||
|
for j in 0, 1:
|
||
|
df0 = self.data[j]
|
||
|
for k in self.test_ix[j]:
|
||
|
fname = os.path.join(self.dirpath, f"test{k}.sas7bdat")
|
||
|
df = pd.read_sas(fname, encoding="utf-8")
|
||
|
tm.assert_frame_equal(df, df0)
|
||
|
|
||
|
def test_from_buffer(self):
|
||
|
for j in 0, 1:
|
||
|
df0 = self.data[j]
|
||
|
for k in self.test_ix[j]:
|
||
|
fname = os.path.join(self.dirpath, f"test{k}.sas7bdat")
|
||
|
with open(fname, "rb") as f:
|
||
|
byts = f.read()
|
||
|
buf = io.BytesIO(byts)
|
||
|
with pd.read_sas(
|
||
|
buf, format="sas7bdat", iterator=True, encoding="utf-8"
|
||
|
) as rdr:
|
||
|
df = rdr.read()
|
||
|
tm.assert_frame_equal(df, df0, check_exact=False)
|
||
|
|
||
|
def test_from_iterator(self):
|
||
|
for j in 0, 1:
|
||
|
df0 = self.data[j]
|
||
|
for k in self.test_ix[j]:
|
||
|
fname = os.path.join(self.dirpath, f"test{k}.sas7bdat")
|
||
|
with pd.read_sas(fname, iterator=True, encoding="utf-8") as rdr:
|
||
|
df = rdr.read(2)
|
||
|
tm.assert_frame_equal(df, df0.iloc[0:2, :])
|
||
|
df = rdr.read(3)
|
||
|
tm.assert_frame_equal(df, df0.iloc[2:5, :])
|
||
|
|
||
|
def test_path_pathlib(self):
|
||
|
for j in 0, 1:
|
||
|
df0 = self.data[j]
|
||
|
for k in self.test_ix[j]:
|
||
|
fname = Path(os.path.join(self.dirpath, f"test{k}.sas7bdat"))
|
||
|
df = pd.read_sas(fname, encoding="utf-8")
|
||
|
tm.assert_frame_equal(df, df0)
|
||
|
|
||
|
@td.skip_if_no("py.path")
|
||
|
def test_path_localpath(self):
|
||
|
from py.path import local as LocalPath
|
||
|
|
||
|
for j in 0, 1:
|
||
|
df0 = self.data[j]
|
||
|
for k in self.test_ix[j]:
|
||
|
fname = LocalPath(os.path.join(self.dirpath, f"test{k}.sas7bdat"))
|
||
|
df = pd.read_sas(fname, encoding="utf-8")
|
||
|
tm.assert_frame_equal(df, df0)
|
||
|
|
||
|
def test_iterator_loop(self):
|
||
|
# github #13654
|
||
|
for j in 0, 1:
|
||
|
for k in self.test_ix[j]:
|
||
|
for chunksize in 3, 5, 10, 11:
|
||
|
fname = os.path.join(self.dirpath, f"test{k}.sas7bdat")
|
||
|
with pd.read_sas(fname, chunksize=10, encoding="utf-8") as rdr:
|
||
|
y = 0
|
||
|
for x in rdr:
|
||
|
y += x.shape[0]
|
||
|
assert y == rdr.row_count
|
||
|
|
||
|
def test_iterator_read_too_much(self):
|
||
|
# github #14734
|
||
|
k = self.test_ix[0][0]
|
||
|
fname = os.path.join(self.dirpath, f"test{k}.sas7bdat")
|
||
|
with pd.read_sas(
|
||
|
fname, format="sas7bdat", iterator=True, encoding="utf-8"
|
||
|
) as rdr:
|
||
|
d1 = rdr.read(rdr.row_count + 20)
|
||
|
|
||
|
with pd.read_sas(fname, iterator=True, encoding="utf-8") as rdr:
|
||
|
d2 = rdr.read(rdr.row_count + 20)
|
||
|
tm.assert_frame_equal(d1, d2)
|
||
|
|
||
|
|
||
|
def test_encoding_options(datapath):
|
||
|
fname = datapath("io", "sas", "data", "test1.sas7bdat")
|
||
|
df1 = pd.read_sas(fname)
|
||
|
df2 = pd.read_sas(fname, encoding="utf-8")
|
||
|
for col in df1.columns:
|
||
|
try:
|
||
|
df1[col] = df1[col].str.decode("utf-8")
|
||
|
except AttributeError:
|
||
|
pass
|
||
|
tm.assert_frame_equal(df1, df2)
|
||
|
|
||
|
from pandas.io.sas.sas7bdat import SAS7BDATReader
|
||
|
|
||
|
rdr = SAS7BDATReader(fname, convert_header_text=False)
|
||
|
df3 = rdr.read()
|
||
|
rdr.close()
|
||
|
for x, y in zip(df1.columns, df3.columns):
|
||
|
assert x == y.decode()
|
||
|
|
||
|
|
||
|
def test_productsales(datapath):
|
||
|
fname = datapath("io", "sas", "data", "productsales.sas7bdat")
|
||
|
df = pd.read_sas(fname, encoding="utf-8")
|
||
|
fname = datapath("io", "sas", "data", "productsales.csv")
|
||
|
df0 = pd.read_csv(fname, parse_dates=["MONTH"])
|
||
|
vn = ["ACTUAL", "PREDICT", "QUARTER", "YEAR"]
|
||
|
df0[vn] = df0[vn].astype(np.float64)
|
||
|
tm.assert_frame_equal(df, df0)
|
||
|
|
||
|
|
||
|
def test_12659(datapath):
|
||
|
fname = datapath("io", "sas", "data", "test_12659.sas7bdat")
|
||
|
df = pd.read_sas(fname)
|
||
|
fname = datapath("io", "sas", "data", "test_12659.csv")
|
||
|
df0 = pd.read_csv(fname)
|
||
|
df0 = df0.astype(np.float64)
|
||
|
tm.assert_frame_equal(df, df0)
|
||
|
|
||
|
|
||
|
def test_airline(datapath):
|
||
|
fname = datapath("io", "sas", "data", "airline.sas7bdat")
|
||
|
df = pd.read_sas(fname)
|
||
|
fname = datapath("io", "sas", "data", "airline.csv")
|
||
|
df0 = pd.read_csv(fname)
|
||
|
df0 = df0.astype(np.float64)
|
||
|
tm.assert_frame_equal(df, df0, check_exact=False)
|
||
|
|
||
|
|
||
|
def test_date_time(datapath):
|
||
|
# Support of different SAS date/datetime formats (PR #15871)
|
||
|
fname = datapath("io", "sas", "data", "datetime.sas7bdat")
|
||
|
df = pd.read_sas(fname)
|
||
|
fname = datapath("io", "sas", "data", "datetime.csv")
|
||
|
df0 = pd.read_csv(
|
||
|
fname, parse_dates=["Date1", "Date2", "DateTime", "DateTimeHi", "Taiw"]
|
||
|
)
|
||
|
# GH 19732: Timestamps imported from sas will incur floating point errors
|
||
|
df.iloc[:, 3] = df.iloc[:, 3].dt.round("us")
|
||
|
tm.assert_frame_equal(df, df0)
|
||
|
|
||
|
|
||
|
def test_compact_numerical_values(datapath):
|
||
|
# Regression test for #21616
|
||
|
fname = datapath("io", "sas", "data", "cars.sas7bdat")
|
||
|
df = pd.read_sas(fname, encoding="latin-1")
|
||
|
# The two columns CYL and WGT in cars.sas7bdat have column
|
||
|
# width < 8 and only contain integral values.
|
||
|
# Test that pandas doesn't corrupt the numbers by adding
|
||
|
# decimals.
|
||
|
result = df["WGT"]
|
||
|
expected = df["WGT"].round()
|
||
|
tm.assert_series_equal(result, expected, check_exact=True)
|
||
|
result = df["CYL"]
|
||
|
expected = df["CYL"].round()
|
||
|
tm.assert_series_equal(result, expected, check_exact=True)
|
||
|
|
||
|
|
||
|
def test_many_columns(datapath):
|
||
|
# Test for looking for column information in more places (PR #22628)
|
||
|
fname = datapath("io", "sas", "data", "many_columns.sas7bdat")
|
||
|
df = pd.read_sas(fname, encoding="latin-1")
|
||
|
fname = datapath("io", "sas", "data", "many_columns.csv")
|
||
|
df0 = pd.read_csv(fname, encoding="latin-1")
|
||
|
tm.assert_frame_equal(df, df0)
|
||
|
|
||
|
|
||
|
def test_inconsistent_number_of_rows(datapath):
|
||
|
# Regression test for issue #16615. (PR #22628)
|
||
|
fname = datapath("io", "sas", "data", "load_log.sas7bdat")
|
||
|
df = pd.read_sas(fname, encoding="latin-1")
|
||
|
assert len(df) == 2097
|
||
|
|
||
|
|
||
|
def test_zero_variables(datapath):
|
||
|
# Check if the SAS file has zero variables (PR #18184)
|
||
|
fname = datapath("io", "sas", "data", "zero_variables.sas7bdat")
|
||
|
with pytest.raises(EmptyDataError):
|
||
|
pd.read_sas(fname)
|
||
|
|
||
|
|
||
|
def test_corrupt_read(datapath):
|
||
|
# We don't really care about the exact failure, the important thing is
|
||
|
# that the resource should be cleaned up afterwards (BUG #35566)
|
||
|
fname = datapath("io", "sas", "data", "corrupt.sas7bdat")
|
||
|
with pytest.raises(AttributeError):
|
||
|
pd.read_sas(fname)
|
||
|
|
||
|
|
||
|
def round_datetime_to_ms(ts):
|
||
|
if isinstance(ts, datetime):
|
||
|
return ts.replace(microsecond=int(round(ts.microsecond, -3) / 1000) * 1000)
|
||
|
elif isinstance(ts, str):
|
||
|
_ts = dateutil.parser.parse(timestr=ts)
|
||
|
return _ts.replace(microsecond=int(round(_ts.microsecond, -3) / 1000) * 1000)
|
||
|
else:
|
||
|
return ts
|
||
|
|
||
|
|
||
|
def test_max_sas_date(datapath):
|
||
|
# GH 20927
|
||
|
# NB. max datetime in SAS dataset is 31DEC9999:23:59:59.999
|
||
|
# but this is read as 29DEC9999:23:59:59.998993 by a buggy
|
||
|
# sas7bdat module
|
||
|
fname = datapath("io", "sas", "data", "max_sas_date.sas7bdat")
|
||
|
df = pd.read_sas(fname, encoding="iso-8859-1")
|
||
|
|
||
|
# SAS likes to left pad strings with spaces - lstrip before comparing
|
||
|
df = df.applymap(lambda x: x.lstrip() if isinstance(x, str) else x)
|
||
|
# GH 19732: Timestamps imported from sas will incur floating point errors
|
||
|
try:
|
||
|
df["dt_as_dt"] = df["dt_as_dt"].dt.round("us")
|
||
|
except pd._libs.tslibs.np_datetime.OutOfBoundsDatetime:
|
||
|
df = df.applymap(round_datetime_to_ms)
|
||
|
except AttributeError:
|
||
|
df["dt_as_dt"] = df["dt_as_dt"].apply(round_datetime_to_ms)
|
||
|
# if there are any date/times > pandas.Timestamp.max then ALL in that chunk
|
||
|
# are returned as datetime.datetime
|
||
|
expected = pd.DataFrame(
|
||
|
{
|
||
|
"text": ["max", "normal"],
|
||
|
"dt_as_float": [253717747199.999, 1880323199.999],
|
||
|
"dt_as_dt": [
|
||
|
datetime(9999, 12, 29, 23, 59, 59, 999000),
|
||
|
datetime(2019, 8, 1, 23, 59, 59, 999000),
|
||
|
],
|
||
|
"date_as_float": [2936547.0, 21762.0],
|
||
|
"date_as_date": [datetime(9999, 12, 29), datetime(2019, 8, 1)],
|
||
|
},
|
||
|
columns=["text", "dt_as_float", "dt_as_dt", "date_as_float", "date_as_date"],
|
||
|
)
|
||
|
tm.assert_frame_equal(df, expected)
|
||
|
|
||
|
|
||
|
def test_max_sas_date_iterator(datapath):
|
||
|
# GH 20927
|
||
|
# when called as an iterator, only those chunks with a date > pd.Timestamp.max
|
||
|
# are returned as datetime.datetime, if this happens that whole chunk is returned
|
||
|
# as datetime.datetime
|
||
|
col_order = ["text", "dt_as_float", "dt_as_dt", "date_as_float", "date_as_date"]
|
||
|
fname = datapath("io", "sas", "data", "max_sas_date.sas7bdat")
|
||
|
results = []
|
||
|
for df in pd.read_sas(fname, encoding="iso-8859-1", chunksize=1):
|
||
|
# SAS likes to left pad strings with spaces - lstrip before comparing
|
||
|
df = df.applymap(lambda x: x.lstrip() if isinstance(x, str) else x)
|
||
|
# GH 19732: Timestamps imported from sas will incur floating point errors
|
||
|
try:
|
||
|
df["dt_as_dt"] = df["dt_as_dt"].dt.round("us")
|
||
|
except pd._libs.tslibs.np_datetime.OutOfBoundsDatetime:
|
||
|
df = df.applymap(round_datetime_to_ms)
|
||
|
except AttributeError:
|
||
|
df["dt_as_dt"] = df["dt_as_dt"].apply(round_datetime_to_ms)
|
||
|
df.reset_index(inplace=True, drop=True)
|
||
|
results.append(df)
|
||
|
expected = [
|
||
|
pd.DataFrame(
|
||
|
{
|
||
|
"text": ["max"],
|
||
|
"dt_as_float": [253717747199.999],
|
||
|
"dt_as_dt": [datetime(9999, 12, 29, 23, 59, 59, 999000)],
|
||
|
"date_as_float": [2936547.0],
|
||
|
"date_as_date": [datetime(9999, 12, 29)],
|
||
|
},
|
||
|
columns=col_order,
|
||
|
),
|
||
|
pd.DataFrame(
|
||
|
{
|
||
|
"text": ["normal"],
|
||
|
"dt_as_float": [1880323199.999],
|
||
|
"dt_as_dt": [np.datetime64("2019-08-01 23:59:59.999")],
|
||
|
"date_as_float": [21762.0],
|
||
|
"date_as_date": [np.datetime64("2019-08-01")],
|
||
|
},
|
||
|
columns=col_order,
|
||
|
),
|
||
|
]
|
||
|
for result, expected in zip(results, expected):
|
||
|
tm.assert_frame_equal(result, expected)
|