projektAI/venv/Lib/site-packages/pandas/tests/series/test_api.py

180 lines
5.8 KiB
Python
Raw Normal View History

2021-06-06 22:13:05 +02:00
import pydoc
import numpy as np
import pytest
import pandas as pd
from pandas import DataFrame, Index, Series, date_range
import pandas._testing as tm
class TestSeriesMisc:
def test_getitem_preserve_name(self, datetime_series):
result = datetime_series[datetime_series > 0]
assert result.name == datetime_series.name
result = datetime_series[[0, 2, 4]]
assert result.name == datetime_series.name
result = datetime_series[5:10]
assert result.name == datetime_series.name
def test_tab_completion(self):
# GH 9910
s = Series(list("abcd"))
# Series of str values should have .str but not .dt/.cat in __dir__
assert "str" in dir(s)
assert "dt" not in dir(s)
assert "cat" not in dir(s)
# similarly for .dt
s = Series(date_range("1/1/2015", periods=5))
assert "dt" in dir(s)
assert "str" not in dir(s)
assert "cat" not in dir(s)
# Similarly for .cat, but with the twist that str and dt should be
# there if the categories are of that type first cat and str.
s = Series(list("abbcd"), dtype="category")
assert "cat" in dir(s)
assert "str" in dir(s) # as it is a string categorical
assert "dt" not in dir(s)
# similar to cat and str
s = Series(date_range("1/1/2015", periods=5)).astype("category")
assert "cat" in dir(s)
assert "str" not in dir(s)
assert "dt" in dir(s) # as it is a datetime categorical
def test_tab_completion_with_categorical(self):
# test the tab completion display
ok_for_cat = [
"categories",
"codes",
"ordered",
"set_categories",
"add_categories",
"remove_categories",
"rename_categories",
"reorder_categories",
"remove_unused_categories",
"as_ordered",
"as_unordered",
]
def get_dir(s):
results = [r for r in s.cat.__dir__() if not r.startswith("_")]
return sorted(set(results))
s = Series(list("aabbcde")).astype("category")
results = get_dir(s)
tm.assert_almost_equal(results, sorted(set(ok_for_cat)))
@pytest.mark.parametrize(
"index",
[
tm.makeUnicodeIndex(10),
tm.makeStringIndex(10),
tm.makeCategoricalIndex(10),
Index(["foo", "bar", "baz"] * 2),
tm.makeDateIndex(10),
tm.makePeriodIndex(10),
tm.makeTimedeltaIndex(10),
tm.makeIntIndex(10),
tm.makeUIntIndex(10),
tm.makeIntIndex(10),
tm.makeFloatIndex(10),
Index([True, False]),
Index([f"a{i}" for i in range(101)]),
pd.MultiIndex.from_tuples(zip("ABCD", "EFGH")),
pd.MultiIndex.from_tuples(zip([0, 1, 2, 3], "EFGH")),
],
)
def test_index_tab_completion(self, index):
# dir contains string-like values of the Index.
s = Series(index=index, dtype=object)
dir_s = dir(s)
for i, x in enumerate(s.index.unique(level=0)):
if i < 100:
assert not isinstance(x, str) or not x.isidentifier() or x in dir_s
else:
assert x not in dir_s
def test_not_hashable(self):
s_empty = Series(dtype=object)
s = Series([1])
msg = "'Series' objects are mutable, thus they cannot be hashed"
with pytest.raises(TypeError, match=msg):
hash(s_empty)
with pytest.raises(TypeError, match=msg):
hash(s)
def test_contains(self, datetime_series):
tm.assert_contains_all(datetime_series.index, datetime_series)
def test_raise_on_info(self):
s = Series(np.random.randn(10))
msg = "'Series' object has no attribute 'info'"
with pytest.raises(AttributeError, match=msg):
s.info()
def test_axis_alias(self):
s = Series([1, 2, np.nan])
tm.assert_series_equal(s.dropna(axis="rows"), s.dropna(axis="index"))
assert s.dropna().sum("rows") == 3
assert s._get_axis_number("rows") == 0
assert s._get_axis_name("rows") == "index"
def test_class_axis(self):
# https://github.com/pandas-dev/pandas/issues/18147
# no exception and no empty docstring
assert pydoc.getdoc(Series.index)
def test_ndarray_compat(self):
# test numpy compat with Series as sub-class of NDFrame
tsdf = DataFrame(
np.random.randn(1000, 3),
columns=["A", "B", "C"],
index=date_range("1/1/2000", periods=1000),
)
def f(x):
return x[x.idxmax()]
result = tsdf.apply(f)
expected = tsdf.max()
tm.assert_series_equal(result, expected)
# using an ndarray like function
s = Series(np.random.randn(10))
result = Series(np.ones_like(s))
expected = Series(1, index=range(10), dtype="float64")
tm.assert_series_equal(result, expected)
# ravel
s = Series(np.random.randn(10))
tm.assert_almost_equal(s.ravel(order="F"), s.values.ravel(order="F"))
def test_empty_method(self):
s_empty = Series(dtype=object)
assert s_empty.empty
s2 = Series(index=[1], dtype=object)
for full_series in [Series([1]), s2]:
assert not full_series.empty
def test_integer_series_size(self):
# GH 25580
s = Series(range(9))
assert s.size == 9
s = Series(range(9), dtype="Int64")
assert s.size == 9
def test_attrs(self):
s = Series([0, 1], name="abc")
assert s.attrs == {}
s.attrs["version"] = 1
result = s + 1
assert result.attrs == {"version": 1}