338 lines
11 KiB
Python
338 lines
11 KiB
Python
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import DataFrame, Index, MultiIndex, Series
|
||
|
import pandas._testing as tm
|
||
|
from pandas.core.util.hashing import hash_tuples
|
||
|
from pandas.util import hash_array, hash_pandas_object
|
||
|
|
||
|
|
||
|
@pytest.fixture(
|
||
|
params=[
|
||
|
Series([1, 2, 3] * 3, dtype="int32"),
|
||
|
Series([None, 2.5, 3.5] * 3, dtype="float32"),
|
||
|
Series(["a", "b", "c"] * 3, dtype="category"),
|
||
|
Series(["d", "e", "f"] * 3),
|
||
|
Series([True, False, True] * 3),
|
||
|
Series(pd.date_range("20130101", periods=9)),
|
||
|
Series(pd.date_range("20130101", periods=9, tz="US/Eastern")),
|
||
|
Series(pd.timedelta_range("2000", periods=9)),
|
||
|
]
|
||
|
)
|
||
|
def series(request):
|
||
|
return request.param
|
||
|
|
||
|
|
||
|
@pytest.fixture(params=[True, False])
|
||
|
def index(request):
|
||
|
return request.param
|
||
|
|
||
|
|
||
|
def _check_equal(obj, **kwargs):
|
||
|
"""
|
||
|
Check that hashing an objects produces the same value each time.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
obj : object
|
||
|
The object to hash.
|
||
|
kwargs : kwargs
|
||
|
Keyword arguments to pass to the hashing function.
|
||
|
"""
|
||
|
a = hash_pandas_object(obj, **kwargs)
|
||
|
b = hash_pandas_object(obj, **kwargs)
|
||
|
tm.assert_series_equal(a, b)
|
||
|
|
||
|
|
||
|
def _check_not_equal_with_index(obj):
|
||
|
"""
|
||
|
Check the hash of an object with and without its index is not the same.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
obj : object
|
||
|
The object to hash.
|
||
|
"""
|
||
|
if not isinstance(obj, Index):
|
||
|
a = hash_pandas_object(obj, index=True)
|
||
|
b = hash_pandas_object(obj, index=False)
|
||
|
|
||
|
if len(obj):
|
||
|
assert not (a == b).all()
|
||
|
|
||
|
|
||
|
def test_consistency():
|
||
|
# Check that our hash doesn't change because of a mistake
|
||
|
# in the actual code; this is the ground truth.
|
||
|
result = hash_pandas_object(Index(["foo", "bar", "baz"]))
|
||
|
expected = Series(
|
||
|
np.array(
|
||
|
[3600424527151052760, 1374399572096150070, 477881037637427054],
|
||
|
dtype="uint64",
|
||
|
),
|
||
|
index=["foo", "bar", "baz"],
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_hash_array(series):
|
||
|
arr = series.values
|
||
|
tm.assert_numpy_array_equal(hash_array(arr), hash_array(arr))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"arr2", [np.array([3, 4, "All"]), np.array([3, 4, "All"], dtype=object)]
|
||
|
)
|
||
|
def test_hash_array_mixed(arr2):
|
||
|
result1 = hash_array(np.array(["3", "4", "All"]))
|
||
|
result2 = hash_array(arr2)
|
||
|
|
||
|
tm.assert_numpy_array_equal(result1, result2)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("val", [5, "foo", pd.Timestamp("20130101")])
|
||
|
def test_hash_array_errors(val):
|
||
|
msg = "must pass a ndarray-like"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
hash_array(val)
|
||
|
|
||
|
|
||
|
def test_hash_tuples():
|
||
|
tuples = [(1, "one"), (1, "two"), (2, "one")]
|
||
|
result = hash_tuples(tuples)
|
||
|
|
||
|
expected = hash_pandas_object(MultiIndex.from_tuples(tuples)).values
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
result = hash_tuples(tuples[0])
|
||
|
assert result == expected[0]
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("val", [5, "foo", pd.Timestamp("20130101")])
|
||
|
def test_hash_tuples_err(val):
|
||
|
msg = "must be convertible to a list-of-tuples"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
hash_tuples(val)
|
||
|
|
||
|
|
||
|
def test_multiindex_unique():
|
||
|
mi = MultiIndex.from_tuples([(118, 472), (236, 118), (51, 204), (102, 51)])
|
||
|
assert mi.is_unique is True
|
||
|
|
||
|
result = hash_pandas_object(mi)
|
||
|
assert result.is_unique is True
|
||
|
|
||
|
|
||
|
def test_multiindex_objects():
|
||
|
mi = MultiIndex(
|
||
|
levels=[["b", "d", "a"], [1, 2, 3]],
|
||
|
codes=[[0, 1, 0, 2], [2, 0, 0, 1]],
|
||
|
names=["col1", "col2"],
|
||
|
)
|
||
|
recons = mi._sort_levels_monotonic()
|
||
|
|
||
|
# These are equal.
|
||
|
assert mi.equals(recons)
|
||
|
assert Index(mi.values).equals(Index(recons.values))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"obj",
|
||
|
[
|
||
|
Series([1, 2, 3]),
|
||
|
Series([1.0, 1.5, 3.2]),
|
||
|
Series([1.0, 1.5, np.nan]),
|
||
|
Series([1.0, 1.5, 3.2], index=[1.5, 1.1, 3.3]),
|
||
|
Series(["a", "b", "c"]),
|
||
|
Series(["a", np.nan, "c"]),
|
||
|
Series(["a", None, "c"]),
|
||
|
Series([True, False, True]),
|
||
|
Series(dtype=object),
|
||
|
Index([1, 2, 3]),
|
||
|
Index([True, False, True]),
|
||
|
DataFrame({"x": ["a", "b", "c"], "y": [1, 2, 3]}),
|
||
|
DataFrame(),
|
||
|
tm.makeMissingDataframe(),
|
||
|
tm.makeMixedDataFrame(),
|
||
|
tm.makeTimeDataFrame(),
|
||
|
tm.makeTimeSeries(),
|
||
|
tm.makeTimedeltaIndex(),
|
||
|
tm.makePeriodIndex(),
|
||
|
Series(tm.makePeriodIndex()),
|
||
|
Series(pd.date_range("20130101", periods=3, tz="US/Eastern")),
|
||
|
MultiIndex.from_product(
|
||
|
[range(5), ["foo", "bar", "baz"], pd.date_range("20130101", periods=2)]
|
||
|
),
|
||
|
MultiIndex.from_product([pd.CategoricalIndex(list("aabc")), range(3)]),
|
||
|
],
|
||
|
)
|
||
|
def test_hash_pandas_object(obj, index):
|
||
|
_check_equal(obj, index=index)
|
||
|
_check_not_equal_with_index(obj)
|
||
|
|
||
|
|
||
|
def test_hash_pandas_object2(series, index):
|
||
|
_check_equal(series, index=index)
|
||
|
_check_not_equal_with_index(series)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"obj", [Series([], dtype="float64"), Series([], dtype="object"), Index([])]
|
||
|
)
|
||
|
def test_hash_pandas_empty_object(obj, index):
|
||
|
# These are by-definition the same with
|
||
|
# or without the index as the data is empty.
|
||
|
_check_equal(obj, index=index)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"s1",
|
||
|
[
|
||
|
Series(["a", "b", "c", "d"]),
|
||
|
Series([1000, 2000, 3000, 4000]),
|
||
|
Series(pd.date_range(0, periods=4)),
|
||
|
],
|
||
|
)
|
||
|
@pytest.mark.parametrize("categorize", [True, False])
|
||
|
def test_categorical_consistency(s1, categorize):
|
||
|
# see gh-15143
|
||
|
#
|
||
|
# Check that categoricals hash consistent with their values,
|
||
|
# not codes. This should work for categoricals of any dtype.
|
||
|
s2 = s1.astype("category").cat.set_categories(s1)
|
||
|
s3 = s2.cat.set_categories(list(reversed(s1)))
|
||
|
|
||
|
# These should all hash identically.
|
||
|
h1 = hash_pandas_object(s1, categorize=categorize)
|
||
|
h2 = hash_pandas_object(s2, categorize=categorize)
|
||
|
h3 = hash_pandas_object(s3, categorize=categorize)
|
||
|
|
||
|
tm.assert_series_equal(h1, h2)
|
||
|
tm.assert_series_equal(h1, h3)
|
||
|
|
||
|
|
||
|
def test_categorical_with_nan_consistency():
|
||
|
c = pd.Categorical.from_codes(
|
||
|
[-1, 0, 1, 2, 3, 4], categories=pd.date_range("2012-01-01", periods=5, name="B")
|
||
|
)
|
||
|
expected = hash_array(c, categorize=False)
|
||
|
|
||
|
c = pd.Categorical.from_codes([-1, 0], categories=[pd.Timestamp("2012-01-01")])
|
||
|
result = hash_array(c, categorize=False)
|
||
|
|
||
|
assert result[0] in expected
|
||
|
assert result[1] in expected
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("obj", [pd.Timestamp("20130101")])
|
||
|
def test_pandas_errors(obj):
|
||
|
msg = "Unexpected type for hashing"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
hash_pandas_object(obj)
|
||
|
|
||
|
|
||
|
def test_hash_keys():
|
||
|
# Using different hash keys, should have
|
||
|
# different hashes for the same data.
|
||
|
#
|
||
|
# This only matters for object dtypes.
|
||
|
obj = Series(list("abc"))
|
||
|
|
||
|
a = hash_pandas_object(obj, hash_key="9876543210123456")
|
||
|
b = hash_pandas_object(obj, hash_key="9876543210123465")
|
||
|
|
||
|
assert (a != b).all()
|
||
|
|
||
|
|
||
|
def test_invalid_key():
|
||
|
# This only matters for object dtypes.
|
||
|
msg = "key should be a 16-byte string encoded"
|
||
|
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
hash_pandas_object(Series(list("abc")), hash_key="foo")
|
||
|
|
||
|
|
||
|
def test_already_encoded(index):
|
||
|
# If already encoded, then ok.
|
||
|
obj = Series(list("abc")).str.encode("utf8")
|
||
|
_check_equal(obj, index=index)
|
||
|
|
||
|
|
||
|
def test_alternate_encoding(index):
|
||
|
obj = Series(list("abc"))
|
||
|
_check_equal(obj, index=index, encoding="ascii")
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("l_exp", range(8))
|
||
|
@pytest.mark.parametrize("l_add", [0, 1])
|
||
|
def test_same_len_hash_collisions(l_exp, l_add):
|
||
|
length = 2 ** (l_exp + 8) + l_add
|
||
|
s = tm.rands_array(length, 2)
|
||
|
|
||
|
result = hash_array(s, "utf8")
|
||
|
assert not result[0] == result[1]
|
||
|
|
||
|
|
||
|
def test_hash_collisions():
|
||
|
# Hash collisions are bad.
|
||
|
#
|
||
|
# https://github.com/pandas-dev/pandas/issues/14711#issuecomment-264885726
|
||
|
hashes = [
|
||
|
"Ingrid-9Z9fKIZmkO7i7Cn51Li34pJm44fgX6DYGBNj3VPlOH50m7HnBlPxfIwFMrcNJNMP6PSgLmwWnInciMWrCSAlLEvt7JkJl4IxiMrVbXSa8ZQoVaq5xoQPjltuJEfwdNlO6jo8qRRHvD8sBEBMQASrRa6TsdaPTPCBo3nwIBpE7YzzmyH0vMBhjQZLx1aCT7faSEx7PgFxQhHdKFWROcysamgy9iVj8DO2Fmwg1NNl93rIAqC3mdqfrCxrzfvIY8aJdzin2cHVzy3QUJxZgHvtUtOLxoqnUHsYbNTeq0xcLXpTZEZCxD4PGubIuCNf32c33M7HFsnjWSEjE2yVdWKhmSVodyF8hFYVmhYnMCztQnJrt3O8ZvVRXd5IKwlLexiSp4h888w7SzAIcKgc3g5XQJf6MlSMftDXm9lIsE1mJNiJEv6uY6pgvC3fUPhatlR5JPpVAHNSbSEE73MBzJrhCAbOLXQumyOXigZuPoME7QgJcBalliQol7YZ9", # noqa: E501
|
||
|
"Tim-b9MddTxOWW2AT1Py6vtVbZwGAmYCjbp89p8mxsiFoVX4FyDOF3wFiAkyQTUgwg9sVqVYOZo09Dh1AzhFHbgij52ylF0SEwgzjzHH8TGY8Lypart4p4onnDoDvVMBa0kdthVGKl6K0BDVGzyOXPXKpmnMF1H6rJzqHJ0HywfwS4XYpVwlAkoeNsiicHkJUFdUAhG229INzvIAiJuAHeJDUoyO4DCBqtoZ5TDend6TK7Y914yHlfH3g1WZu5LksKv68VQHJriWFYusW5e6ZZ6dKaMjTwEGuRgdT66iU5nqWTHRH8WSzpXoCFwGcTOwyuqPSe0fTe21DVtJn1FKj9F9nEnR9xOvJUO7E0piCIF4Ad9yAIDY4DBimpsTfKXCu1vdHpKYerzbndfuFe5AhfMduLYZJi5iAw8qKSwR5h86ttXV0Mc0QmXz8dsRvDgxjXSmupPxBggdlqUlC828hXiTPD7am0yETBV0F3bEtvPiNJfremszcV8NcqAoARMe", # noqa: E501
|
||
|
]
|
||
|
|
||
|
# These should be different.
|
||
|
result1 = hash_array(np.asarray(hashes[0:1], dtype=object), "utf8")
|
||
|
expected1 = np.array([14963968704024874985], dtype=np.uint64)
|
||
|
tm.assert_numpy_array_equal(result1, expected1)
|
||
|
|
||
|
result2 = hash_array(np.asarray(hashes[1:2], dtype=object), "utf8")
|
||
|
expected2 = np.array([16428432627716348016], dtype=np.uint64)
|
||
|
tm.assert_numpy_array_equal(result2, expected2)
|
||
|
|
||
|
result = hash_array(np.asarray(hashes, dtype=object), "utf8")
|
||
|
tm.assert_numpy_array_equal(result, np.concatenate([expected1, expected2], axis=0))
|
||
|
|
||
|
|
||
|
def test_hash_with_tuple():
|
||
|
# GH#28969 array containing a tuple raises on call to arr.astype(str)
|
||
|
# apparently a numpy bug github.com/numpy/numpy/issues/9441
|
||
|
|
||
|
df = DataFrame({"data": [tuple("1"), tuple("2")]})
|
||
|
result = hash_pandas_object(df)
|
||
|
expected = Series([10345501319357378243, 8331063931016360761], dtype=np.uint64)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
df2 = DataFrame({"data": [(1,), (2,)]})
|
||
|
result = hash_pandas_object(df2)
|
||
|
expected = Series([9408946347443669104, 3278256261030523334], dtype=np.uint64)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# require that the elements of such tuples are themselves hashable
|
||
|
|
||
|
df3 = DataFrame(
|
||
|
{
|
||
|
"data": [
|
||
|
(
|
||
|
1,
|
||
|
[],
|
||
|
),
|
||
|
(
|
||
|
2,
|
||
|
{},
|
||
|
),
|
||
|
]
|
||
|
}
|
||
|
)
|
||
|
with pytest.raises(TypeError, match="unhashable type: 'list'"):
|
||
|
hash_pandas_object(df3)
|
||
|
|
||
|
|
||
|
def test_hash_object_none_key():
|
||
|
# https://github.com/pandas-dev/pandas/issues/30887
|
||
|
result = pd.util.hash_pandas_object(Series(["a", "b"]), hash_key=None)
|
||
|
expected = Series([4578374827886788867, 17338122309987883691], dtype="uint64")
|
||
|
tm.assert_series_equal(result, expected)
|