111 lines
3.2 KiB
Python
111 lines
3.2 KiB
Python
|
import numpy as np
|
||
|
from . import pypocketfft as pfft
|
||
|
from .helper import (_asfarray, _init_nd_shape_and_axes, _datacopied,
|
||
|
_fix_shape, _fix_shape_1d, _normalization, _workers)
|
||
|
import functools
|
||
|
|
||
|
|
||
|
def _r2r(forward, transform, x, type=2, n=None, axis=-1, norm=None,
|
||
|
overwrite_x=False, workers=None):
|
||
|
"""Forward or backward 1-D DCT/DST
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
forward: bool
|
||
|
Transform direction (determines type and normalisation)
|
||
|
transform: {pypocketfft.dct, pypocketfft.dst}
|
||
|
The transform to perform
|
||
|
"""
|
||
|
tmp = _asfarray(x)
|
||
|
overwrite_x = overwrite_x or _datacopied(tmp, x)
|
||
|
norm = _normalization(norm, forward)
|
||
|
workers = _workers(workers)
|
||
|
|
||
|
if not forward:
|
||
|
if type == 2:
|
||
|
type = 3
|
||
|
elif type == 3:
|
||
|
type = 2
|
||
|
|
||
|
if n is not None:
|
||
|
tmp, copied = _fix_shape_1d(tmp, n, axis)
|
||
|
overwrite_x = overwrite_x or copied
|
||
|
elif tmp.shape[axis] < 1:
|
||
|
raise ValueError("invalid number of data points ({0}) specified"
|
||
|
.format(tmp.shape[axis]))
|
||
|
|
||
|
out = (tmp if overwrite_x else None)
|
||
|
|
||
|
# For complex input, transform real and imaginary components separably
|
||
|
if np.iscomplexobj(x):
|
||
|
out = np.empty_like(tmp) if out is None else out
|
||
|
transform(tmp.real, type, (axis,), norm, out.real, workers)
|
||
|
transform(tmp.imag, type, (axis,), norm, out.imag, workers)
|
||
|
return out
|
||
|
|
||
|
return transform(tmp, type, (axis,), norm, out, workers)
|
||
|
|
||
|
|
||
|
dct = functools.partial(_r2r, True, pfft.dct)
|
||
|
dct.__name__ = 'dct'
|
||
|
idct = functools.partial(_r2r, False, pfft.dct)
|
||
|
idct.__name__ = 'idct'
|
||
|
|
||
|
dst = functools.partial(_r2r, True, pfft.dst)
|
||
|
dst.__name__ = 'dst'
|
||
|
idst = functools.partial(_r2r, False, pfft.dst)
|
||
|
idst.__name__ = 'idst'
|
||
|
|
||
|
|
||
|
def _r2rn(forward, transform, x, type=2, s=None, axes=None, norm=None,
|
||
|
overwrite_x=False, workers=None):
|
||
|
"""Forward or backward nd DCT/DST
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
forward: bool
|
||
|
Transform direction (determines type and normalisation)
|
||
|
transform: {pypocketfft.dct, pypocketfft.dst}
|
||
|
The transform to perform
|
||
|
"""
|
||
|
tmp = _asfarray(x)
|
||
|
|
||
|
shape, axes = _init_nd_shape_and_axes(tmp, s, axes)
|
||
|
overwrite_x = overwrite_x or _datacopied(tmp, x)
|
||
|
|
||
|
if len(axes) == 0:
|
||
|
return x
|
||
|
|
||
|
tmp, copied = _fix_shape(tmp, shape, axes)
|
||
|
overwrite_x = overwrite_x or copied
|
||
|
|
||
|
if not forward:
|
||
|
if type == 2:
|
||
|
type = 3
|
||
|
elif type == 3:
|
||
|
type = 2
|
||
|
|
||
|
norm = _normalization(norm, forward)
|
||
|
workers = _workers(workers)
|
||
|
out = (tmp if overwrite_x else None)
|
||
|
|
||
|
# For complex input, transform real and imaginary components separably
|
||
|
if np.iscomplexobj(x):
|
||
|
out = np.empty_like(tmp) if out is None else out
|
||
|
transform(tmp.real, type, axes, norm, out.real, workers)
|
||
|
transform(tmp.imag, type, axes, norm, out.imag, workers)
|
||
|
return out
|
||
|
|
||
|
return transform(tmp, type, axes, norm, out, workers)
|
||
|
|
||
|
|
||
|
dctn = functools.partial(_r2rn, True, pfft.dct)
|
||
|
dctn.__name__ = 'dctn'
|
||
|
idctn = functools.partial(_r2rn, False, pfft.dct)
|
||
|
idctn.__name__ = 'idctn'
|
||
|
|
||
|
dstn = functools.partial(_r2rn, True, pfft.dst)
|
||
|
dstn.__name__ = 'dstn'
|
||
|
idstn = functools.partial(_r2rn, False, pfft.dst)
|
||
|
idstn.__name__ = 'idstn'
|