222 lines
6.4 KiB
Python
222 lines
6.4 KiB
Python
|
# Created by John Travers, Robert Hetland, 2007
|
||
|
""" Test functions for rbf module """
|
||
|
|
||
|
import numpy as np
|
||
|
from numpy.testing import (assert_, assert_array_almost_equal,
|
||
|
assert_almost_equal)
|
||
|
from numpy import linspace, sin, cos, random, exp, allclose
|
||
|
from scipy.interpolate.rbf import Rbf
|
||
|
|
||
|
FUNCTIONS = ('multiquadric', 'inverse multiquadric', 'gaussian',
|
||
|
'cubic', 'quintic', 'thin-plate', 'linear')
|
||
|
|
||
|
|
||
|
def check_rbf1d_interpolation(function):
|
||
|
# Check that the Rbf function interpolates through the nodes (1D)
|
||
|
x = linspace(0,10,9)
|
||
|
y = sin(x)
|
||
|
rbf = Rbf(x, y, function=function)
|
||
|
yi = rbf(x)
|
||
|
assert_array_almost_equal(y, yi)
|
||
|
assert_almost_equal(rbf(float(x[0])), y[0])
|
||
|
|
||
|
|
||
|
def check_rbf2d_interpolation(function):
|
||
|
# Check that the Rbf function interpolates through the nodes (2D).
|
||
|
x = random.rand(50,1)*4-2
|
||
|
y = random.rand(50,1)*4-2
|
||
|
z = x*exp(-x**2-1j*y**2)
|
||
|
rbf = Rbf(x, y, z, epsilon=2, function=function)
|
||
|
zi = rbf(x, y)
|
||
|
zi.shape = x.shape
|
||
|
assert_array_almost_equal(z, zi)
|
||
|
|
||
|
|
||
|
def check_rbf3d_interpolation(function):
|
||
|
# Check that the Rbf function interpolates through the nodes (3D).
|
||
|
x = random.rand(50, 1)*4 - 2
|
||
|
y = random.rand(50, 1)*4 - 2
|
||
|
z = random.rand(50, 1)*4 - 2
|
||
|
d = x*exp(-x**2 - y**2)
|
||
|
rbf = Rbf(x, y, z, d, epsilon=2, function=function)
|
||
|
di = rbf(x, y, z)
|
||
|
di.shape = x.shape
|
||
|
assert_array_almost_equal(di, d)
|
||
|
|
||
|
|
||
|
def test_rbf_interpolation():
|
||
|
for function in FUNCTIONS:
|
||
|
check_rbf1d_interpolation(function)
|
||
|
check_rbf2d_interpolation(function)
|
||
|
check_rbf3d_interpolation(function)
|
||
|
|
||
|
|
||
|
def check_2drbf1d_interpolation(function):
|
||
|
# Check that the 2-D Rbf function interpolates through the nodes (1D)
|
||
|
x = linspace(0, 10, 9)
|
||
|
y0 = sin(x)
|
||
|
y1 = cos(x)
|
||
|
y = np.vstack([y0, y1]).T
|
||
|
rbf = Rbf(x, y, function=function, mode='N-D')
|
||
|
yi = rbf(x)
|
||
|
assert_array_almost_equal(y, yi)
|
||
|
assert_almost_equal(rbf(float(x[0])), y[0])
|
||
|
|
||
|
|
||
|
def check_2drbf2d_interpolation(function):
|
||
|
# Check that the 2-D Rbf function interpolates through the nodes (2D).
|
||
|
x = random.rand(50, ) * 4 - 2
|
||
|
y = random.rand(50, ) * 4 - 2
|
||
|
z0 = x * exp(-x ** 2 - 1j * y ** 2)
|
||
|
z1 = y * exp(-y ** 2 - 1j * x ** 2)
|
||
|
z = np.vstack([z0, z1]).T
|
||
|
rbf = Rbf(x, y, z, epsilon=2, function=function, mode='N-D')
|
||
|
zi = rbf(x, y)
|
||
|
zi.shape = z.shape
|
||
|
assert_array_almost_equal(z, zi)
|
||
|
|
||
|
|
||
|
def check_2drbf3d_interpolation(function):
|
||
|
# Check that the 2-D Rbf function interpolates through the nodes (3D).
|
||
|
x = random.rand(50, ) * 4 - 2
|
||
|
y = random.rand(50, ) * 4 - 2
|
||
|
z = random.rand(50, ) * 4 - 2
|
||
|
d0 = x * exp(-x ** 2 - y ** 2)
|
||
|
d1 = y * exp(-y ** 2 - x ** 2)
|
||
|
d = np.vstack([d0, d1]).T
|
||
|
rbf = Rbf(x, y, z, d, epsilon=2, function=function, mode='N-D')
|
||
|
di = rbf(x, y, z)
|
||
|
di.shape = d.shape
|
||
|
assert_array_almost_equal(di, d)
|
||
|
|
||
|
|
||
|
def test_2drbf_interpolation():
|
||
|
for function in FUNCTIONS:
|
||
|
check_2drbf1d_interpolation(function)
|
||
|
check_2drbf2d_interpolation(function)
|
||
|
check_2drbf3d_interpolation(function)
|
||
|
|
||
|
|
||
|
def check_rbf1d_regularity(function, atol):
|
||
|
# Check that the Rbf function approximates a smooth function well away
|
||
|
# from the nodes.
|
||
|
x = linspace(0, 10, 9)
|
||
|
y = sin(x)
|
||
|
rbf = Rbf(x, y, function=function)
|
||
|
xi = linspace(0, 10, 100)
|
||
|
yi = rbf(xi)
|
||
|
msg = "abs-diff: %f" % abs(yi - sin(xi)).max()
|
||
|
assert_(allclose(yi, sin(xi), atol=atol), msg)
|
||
|
|
||
|
|
||
|
def test_rbf_regularity():
|
||
|
tolerances = {
|
||
|
'multiquadric': 0.1,
|
||
|
'inverse multiquadric': 0.15,
|
||
|
'gaussian': 0.15,
|
||
|
'cubic': 0.15,
|
||
|
'quintic': 0.1,
|
||
|
'thin-plate': 0.1,
|
||
|
'linear': 0.2
|
||
|
}
|
||
|
for function in FUNCTIONS:
|
||
|
check_rbf1d_regularity(function, tolerances.get(function, 1e-2))
|
||
|
|
||
|
|
||
|
def check_2drbf1d_regularity(function, atol):
|
||
|
# Check that the 2-D Rbf function approximates a smooth function well away
|
||
|
# from the nodes.
|
||
|
x = linspace(0, 10, 9)
|
||
|
y0 = sin(x)
|
||
|
y1 = cos(x)
|
||
|
y = np.vstack([y0, y1]).T
|
||
|
rbf = Rbf(x, y, function=function, mode='N-D')
|
||
|
xi = linspace(0, 10, 100)
|
||
|
yi = rbf(xi)
|
||
|
msg = "abs-diff: %f" % abs(yi - np.vstack([sin(xi), cos(xi)]).T).max()
|
||
|
assert_(allclose(yi, np.vstack([sin(xi), cos(xi)]).T, atol=atol), msg)
|
||
|
|
||
|
|
||
|
def test_2drbf_regularity():
|
||
|
tolerances = {
|
||
|
'multiquadric': 0.1,
|
||
|
'inverse multiquadric': 0.15,
|
||
|
'gaussian': 0.15,
|
||
|
'cubic': 0.15,
|
||
|
'quintic': 0.1,
|
||
|
'thin-plate': 0.15,
|
||
|
'linear': 0.2
|
||
|
}
|
||
|
for function in FUNCTIONS:
|
||
|
check_2drbf1d_regularity(function, tolerances.get(function, 1e-2))
|
||
|
|
||
|
|
||
|
def check_rbf1d_stability(function):
|
||
|
# Check that the Rbf function with default epsilon is not subject
|
||
|
# to overshoot. Regression for issue #4523.
|
||
|
#
|
||
|
# Generate some data (fixed random seed hence deterministic)
|
||
|
np.random.seed(1234)
|
||
|
x = np.linspace(0, 10, 50)
|
||
|
z = x + 4.0 * np.random.randn(len(x))
|
||
|
|
||
|
rbf = Rbf(x, z, function=function)
|
||
|
xi = np.linspace(0, 10, 1000)
|
||
|
yi = rbf(xi)
|
||
|
|
||
|
# subtract the linear trend and make sure there no spikes
|
||
|
assert_(np.abs(yi-xi).max() / np.abs(z-x).max() < 1.1)
|
||
|
|
||
|
def test_rbf_stability():
|
||
|
for function in FUNCTIONS:
|
||
|
check_rbf1d_stability(function)
|
||
|
|
||
|
|
||
|
def test_default_construction():
|
||
|
# Check that the Rbf class can be constructed with the default
|
||
|
# multiquadric basis function. Regression test for ticket #1228.
|
||
|
x = linspace(0,10,9)
|
||
|
y = sin(x)
|
||
|
rbf = Rbf(x, y)
|
||
|
yi = rbf(x)
|
||
|
assert_array_almost_equal(y, yi)
|
||
|
|
||
|
|
||
|
def test_function_is_callable():
|
||
|
# Check that the Rbf class can be constructed with function=callable.
|
||
|
x = linspace(0,10,9)
|
||
|
y = sin(x)
|
||
|
linfunc = lambda x:x
|
||
|
rbf = Rbf(x, y, function=linfunc)
|
||
|
yi = rbf(x)
|
||
|
assert_array_almost_equal(y, yi)
|
||
|
|
||
|
|
||
|
def test_two_arg_function_is_callable():
|
||
|
# Check that the Rbf class can be constructed with a two argument
|
||
|
# function=callable.
|
||
|
def _func(self, r):
|
||
|
return self.epsilon + r
|
||
|
|
||
|
x = linspace(0,10,9)
|
||
|
y = sin(x)
|
||
|
rbf = Rbf(x, y, function=_func)
|
||
|
yi = rbf(x)
|
||
|
assert_array_almost_equal(y, yi)
|
||
|
|
||
|
|
||
|
def test_rbf_epsilon_none():
|
||
|
x = linspace(0, 10, 9)
|
||
|
y = sin(x)
|
||
|
Rbf(x, y, epsilon=None)
|
||
|
|
||
|
|
||
|
def test_rbf_epsilon_none_collinear():
|
||
|
# Check that collinear points in one dimension doesn't cause an error
|
||
|
# due to epsilon = 0
|
||
|
x = [1, 2, 3]
|
||
|
y = [4, 4, 4]
|
||
|
z = [5, 6, 7]
|
||
|
rbf = Rbf(x, y, z, epsilon=None)
|
||
|
assert_(rbf.epsilon > 0)
|