44 lines
1.7 KiB
Python
44 lines
1.7 KiB
Python
|
"""
|
||
|
Tests for sklearn.cluster._feature_agglomeration
|
||
|
"""
|
||
|
# Authors: Sergul Aydore 2017
|
||
|
import numpy as np
|
||
|
from sklearn.cluster import FeatureAgglomeration
|
||
|
from sklearn.utils._testing import assert_no_warnings
|
||
|
from sklearn.utils._testing import assert_array_almost_equal
|
||
|
|
||
|
|
||
|
def test_feature_agglomeration():
|
||
|
n_clusters = 1
|
||
|
X = np.array([0, 0, 1]).reshape(1, 3) # (n_samples, n_features)
|
||
|
|
||
|
agglo_mean = FeatureAgglomeration(n_clusters=n_clusters,
|
||
|
pooling_func=np.mean)
|
||
|
agglo_median = FeatureAgglomeration(n_clusters=n_clusters,
|
||
|
pooling_func=np.median)
|
||
|
assert_no_warnings(agglo_mean.fit, X)
|
||
|
assert_no_warnings(agglo_median.fit, X)
|
||
|
assert np.size(np.unique(agglo_mean.labels_)) == n_clusters
|
||
|
assert np.size(np.unique(agglo_median.labels_)) == n_clusters
|
||
|
assert np.size(agglo_mean.labels_) == X.shape[1]
|
||
|
assert np.size(agglo_median.labels_) == X.shape[1]
|
||
|
|
||
|
# Test transform
|
||
|
Xt_mean = agglo_mean.transform(X)
|
||
|
Xt_median = agglo_median.transform(X)
|
||
|
assert Xt_mean.shape[1] == n_clusters
|
||
|
assert Xt_median.shape[1] == n_clusters
|
||
|
assert Xt_mean == np.array([1 / 3.])
|
||
|
assert Xt_median == np.array([0.])
|
||
|
|
||
|
# Test inverse transform
|
||
|
X_full_mean = agglo_mean.inverse_transform(Xt_mean)
|
||
|
X_full_median = agglo_median.inverse_transform(Xt_median)
|
||
|
assert np.unique(X_full_mean[0]).size == n_clusters
|
||
|
assert np.unique(X_full_median[0]).size == n_clusters
|
||
|
|
||
|
assert_array_almost_equal(agglo_mean.transform(X_full_mean),
|
||
|
Xt_mean)
|
||
|
assert_array_almost_equal(agglo_median.transform(X_full_median),
|
||
|
Xt_median)
|