projektAI/venv/Lib/site-packages/sklearn/decomposition/_dict_learning.py

1657 lines
59 KiB
Python
Raw Normal View History

2021-06-06 22:13:05 +02:00
""" Dictionary learning.
"""
# Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort
# License: BSD 3 clause
import time
import sys
import itertools
from math import ceil
import numpy as np
from scipy import linalg
from joblib import Parallel, effective_n_jobs
from ..base import BaseEstimator, TransformerMixin
from ..utils import deprecated
from ..utils import (check_array, check_random_state, gen_even_slices,
gen_batches)
from ..utils.extmath import randomized_svd, row_norms
from ..utils.validation import check_is_fitted, _deprecate_positional_args
from ..utils.fixes import delayed
from ..linear_model import Lasso, orthogonal_mp_gram, LassoLars, Lars
def _check_positive_coding(method, positive):
if positive and method in ["omp", "lars"]:
raise ValueError(
"Positive constraint not supported for '{}' "
"coding method.".format(method)
)
def _sparse_encode(X, dictionary, gram, cov=None, algorithm='lasso_lars',
regularization=None, copy_cov=True,
init=None, max_iter=1000, check_input=True, verbose=0,
positive=False):
"""Generic sparse coding.
Each column of the result is the solution to a Lasso problem.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Data matrix.
dictionary : ndarray of shape (n_components, n_features)
The dictionary matrix against which to solve the sparse coding of
the data. Some of the algorithms assume normalized rows.
gram : ndarray of shape (n_components, n_components) or None
Precomputed Gram matrix, `dictionary * dictionary'`
gram can be `None` if method is 'threshold'.
cov : ndarray of shape (n_components, n_samples), default=None
Precomputed covariance, `dictionary * X'`.
algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'}, \
default='lasso_lars'
The algorithm used:
* `'lars'`: uses the least angle regression method
(`linear_model.lars_path`);
* `'lasso_lars'`: uses Lars to compute the Lasso solution;
* `'lasso_cd'`: uses the coordinate descent method to compute the
Lasso solution (`linear_model.Lasso`). lasso_lars will be faster if
the estimated components are sparse;
* `'omp'`: uses orthogonal matching pursuit to estimate the sparse
solution;
* `'threshold'`: squashes to zero all coefficients less than
regularization from the projection `dictionary * data'`.
regularization : int or float, default=None
The regularization parameter. It corresponds to alpha when
algorithm is `'lasso_lars'`, `'lasso_cd'` or `'threshold'`.
Otherwise it corresponds to `n_nonzero_coefs`.
init : ndarray of shape (n_samples, n_components), default=None
Initialization value of the sparse code. Only used if
`algorithm='lasso_cd'`.
max_iter : int, default=1000
Maximum number of iterations to perform if `algorithm='lasso_cd'` or
`'lasso_lars'`.
copy_cov : bool, default=True
Whether to copy the precomputed covariance matrix; if `False`, it may
be overwritten.
check_input : bool, default=True
If `False`, the input arrays `X` and dictionary will not be checked.
verbose : int, default=0
Controls the verbosity; the higher, the more messages.
positive: bool, default=False
Whether to enforce a positivity constraint on the sparse code.
.. versionadded:: 0.20
Returns
-------
code : ndarray of shape (n_components, n_features)
The sparse codes.
See Also
--------
sklearn.linear_model.lars_path
sklearn.linear_model.orthogonal_mp
sklearn.linear_model.Lasso
SparseCoder
"""
if X.ndim == 1:
X = X[:, np.newaxis]
n_samples, n_features = X.shape
n_components = dictionary.shape[0]
if dictionary.shape[1] != X.shape[1]:
raise ValueError("Dictionary and X have different numbers of features:"
"dictionary.shape: {} X.shape{}".format(
dictionary.shape, X.shape))
if cov is None and algorithm != 'lasso_cd':
# overwriting cov is safe
copy_cov = False
cov = np.dot(dictionary, X.T)
_check_positive_coding(algorithm, positive)
if algorithm == 'lasso_lars':
alpha = float(regularization) / n_features # account for scaling
try:
err_mgt = np.seterr(all='ignore')
# Not passing in verbose=max(0, verbose-1) because Lars.fit already
# corrects the verbosity level.
lasso_lars = LassoLars(alpha=alpha, fit_intercept=False,
verbose=verbose, normalize=False,
precompute=gram, fit_path=False,
positive=positive, max_iter=max_iter)
lasso_lars.fit(dictionary.T, X.T, Xy=cov)
new_code = lasso_lars.coef_
finally:
np.seterr(**err_mgt)
elif algorithm == 'lasso_cd':
alpha = float(regularization) / n_features # account for scaling
# TODO: Make verbosity argument for Lasso?
# sklearn.linear_model.coordinate_descent.enet_path has a verbosity
# argument that we could pass in from Lasso.
clf = Lasso(alpha=alpha, fit_intercept=False, normalize=False,
precompute=gram, max_iter=max_iter, warm_start=True,
positive=positive)
if init is not None:
clf.coef_ = init
clf.fit(dictionary.T, X.T, check_input=check_input)
new_code = clf.coef_
elif algorithm == 'lars':
try:
err_mgt = np.seterr(all='ignore')
# Not passing in verbose=max(0, verbose-1) because Lars.fit already
# corrects the verbosity level.
lars = Lars(fit_intercept=False, verbose=verbose, normalize=False,
precompute=gram, n_nonzero_coefs=int(regularization),
fit_path=False)
lars.fit(dictionary.T, X.T, Xy=cov)
new_code = lars.coef_
finally:
np.seterr(**err_mgt)
elif algorithm == 'threshold':
new_code = ((np.sign(cov) *
np.maximum(np.abs(cov) - regularization, 0)).T)
if positive:
np.clip(new_code, 0, None, out=new_code)
elif algorithm == 'omp':
new_code = orthogonal_mp_gram(
Gram=gram, Xy=cov, n_nonzero_coefs=int(regularization),
tol=None, norms_squared=row_norms(X, squared=True),
copy_Xy=copy_cov).T
else:
raise ValueError('Sparse coding method must be "lasso_lars" '
'"lasso_cd", "lasso", "threshold" or "omp", got %s.'
% algorithm)
if new_code.ndim != 2:
return new_code.reshape(n_samples, n_components)
return new_code
# XXX : could be moved to the linear_model module
@_deprecate_positional_args
def sparse_encode(X, dictionary, *, gram=None, cov=None,
algorithm='lasso_lars', n_nonzero_coefs=None, alpha=None,
copy_cov=True, init=None, max_iter=1000, n_jobs=None,
check_input=True, verbose=0, positive=False):
"""Sparse coding
Each row of the result is the solution to a sparse coding problem.
The goal is to find a sparse array `code` such that::
X ~= code * dictionary
Read more in the :ref:`User Guide <SparseCoder>`.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Data matrix.
dictionary : ndarray of shape (n_components, n_features)
The dictionary matrix against which to solve the sparse coding of
the data. Some of the algorithms assume normalized rows for meaningful
output.
gram : ndarray of shape (n_components, n_components), default=None
Precomputed Gram matrix, `dictionary * dictionary'`.
cov : ndarray of shape (n_components, n_samples), default=None
Precomputed covariance, `dictionary' * X`.
algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'}, \
default='lasso_lars'
The algorithm used:
* `'lars'`: uses the least angle regression method
(`linear_model.lars_path`);
* `'lasso_lars'`: uses Lars to compute the Lasso solution;
* `'lasso_cd'`: uses the coordinate descent method to compute the
Lasso solution (`linear_model.Lasso`). lasso_lars will be faster if
the estimated components are sparse;
* `'omp'`: uses orthogonal matching pursuit to estimate the sparse
solution;
* `'threshold'`: squashes to zero all coefficients less than
regularization from the projection `dictionary * data'`.
n_nonzero_coefs : int, default=None
Number of nonzero coefficients to target in each column of the
solution. This is only used by `algorithm='lars'` and `algorithm='omp'`
and is overridden by `alpha` in the `omp` case. If `None`, then
`n_nonzero_coefs=int(n_features / 10)`.
alpha : float, default=None
If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the
penalty applied to the L1 norm.
If `algorithm='threshold'`, `alpha` is the absolute value of the
threshold below which coefficients will be squashed to zero.
If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of
the reconstruction error targeted. In this case, it overrides
`n_nonzero_coefs`.
If `None`, default to 1.
copy_cov : bool, default=True
Whether to copy the precomputed covariance matrix; if `False`, it may
be overwritten.
init : ndarray of shape (n_samples, n_components), default=None
Initialization value of the sparse codes. Only used if
`algorithm='lasso_cd'`.
max_iter : int, default=1000
Maximum number of iterations to perform if `algorithm='lasso_cd'` or
`'lasso_lars'`.
n_jobs : int, default=None
Number of parallel jobs to run.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
check_input : bool, default=True
If `False`, the input arrays X and dictionary will not be checked.
verbose : int, default=0
Controls the verbosity; the higher, the more messages.
positive : bool, default=False
Whether to enforce positivity when finding the encoding.
.. versionadded:: 0.20
Returns
-------
code : ndarray of shape (n_samples, n_components)
The sparse codes
See Also
--------
sklearn.linear_model.lars_path
sklearn.linear_model.orthogonal_mp
sklearn.linear_model.Lasso
SparseCoder
"""
if check_input:
if algorithm == 'lasso_cd':
dictionary = check_array(dictionary, order='C', dtype='float64')
X = check_array(X, order='C', dtype='float64')
else:
dictionary = check_array(dictionary)
X = check_array(X)
n_samples, n_features = X.shape
n_components = dictionary.shape[0]
if gram is None and algorithm != 'threshold':
gram = np.dot(dictionary, dictionary.T)
if cov is None and algorithm != 'lasso_cd':
copy_cov = False
cov = np.dot(dictionary, X.T)
if algorithm in ('lars', 'omp'):
regularization = n_nonzero_coefs
if regularization is None:
regularization = min(max(n_features / 10, 1), n_components)
else:
regularization = alpha
if regularization is None:
regularization = 1.
if effective_n_jobs(n_jobs) == 1 or algorithm == 'threshold':
code = _sparse_encode(X,
dictionary, gram, cov=cov,
algorithm=algorithm,
regularization=regularization, copy_cov=copy_cov,
init=init,
max_iter=max_iter,
check_input=False,
verbose=verbose,
positive=positive)
return code
# Enter parallel code block
code = np.empty((n_samples, n_components))
slices = list(gen_even_slices(n_samples, effective_n_jobs(n_jobs)))
code_views = Parallel(n_jobs=n_jobs, verbose=verbose)(
delayed(_sparse_encode)(
X[this_slice], dictionary, gram,
cov[:, this_slice] if cov is not None else None,
algorithm,
regularization=regularization, copy_cov=copy_cov,
init=init[this_slice] if init is not None else None,
max_iter=max_iter,
check_input=False,
verbose=verbose,
positive=positive)
for this_slice in slices)
for this_slice, this_view in zip(slices, code_views):
code[this_slice] = this_view
return code
def _update_dict(dictionary, Y, code, verbose=False, return_r2=False,
random_state=None, positive=False):
"""Update the dense dictionary factor in place.
Parameters
----------
dictionary : ndarray of shape (n_features, n_components)
Value of the dictionary at the previous iteration.
Y : ndarray of shape (n_features, n_samples)
Data matrix.
code : ndarray of shape (n_components, n_samples)
Sparse coding of the data against which to optimize the dictionary.
verbose: bool, default=False
Degree of output the procedure will print.
return_r2 : bool, default=False
Whether to compute and return the residual sum of squares corresponding
to the computed solution.
random_state : int, RandomState instance or None, default=None
Used for randomly initializing the dictionary. Pass an int for
reproducible results across multiple function calls.
See :term:`Glossary <random_state>`.
positive : bool, default=False
Whether to enforce positivity when finding the dictionary.
.. versionadded:: 0.20
Returns
-------
dictionary : ndarray of shape (n_features, n_components)
Updated dictionary.
"""
n_components = len(code)
n_features = Y.shape[0]
random_state = check_random_state(random_state)
# Get BLAS functions
gemm, = linalg.get_blas_funcs(('gemm',), (dictionary, code, Y))
ger, = linalg.get_blas_funcs(('ger',), (dictionary, code))
nrm2, = linalg.get_blas_funcs(('nrm2',), (dictionary,))
# Residuals, computed with BLAS for speed and efficiency
# R <- -1.0 * U * V^T + 1.0 * Y
# Outputs R as Fortran array for efficiency
R = gemm(-1.0, dictionary, code, 1.0, Y)
for k in range(n_components):
# R <- 1.0 * U_k * V_k^T + R
R = ger(1.0, dictionary[:, k], code[k, :], a=R, overwrite_a=True)
dictionary[:, k] = np.dot(R, code[k, :])
if positive:
np.clip(dictionary[:, k], 0, None, out=dictionary[:, k])
# Scale k'th atom
# (U_k * U_k) ** 0.5
atom_norm = nrm2(dictionary[:, k])
if atom_norm < 1e-10:
if verbose == 1:
sys.stdout.write("+")
sys.stdout.flush()
elif verbose:
print("Adding new random atom")
dictionary[:, k] = random_state.randn(n_features)
if positive:
np.clip(dictionary[:, k], 0, None, out=dictionary[:, k])
# Setting corresponding coefs to 0
code[k, :] = 0.0
# (U_k * U_k) ** 0.5
atom_norm = nrm2(dictionary[:, k])
dictionary[:, k] /= atom_norm
else:
dictionary[:, k] /= atom_norm
# R <- -1.0 * U_k * V_k^T + R
R = ger(-1.0, dictionary[:, k], code[k, :], a=R, overwrite_a=True)
if return_r2:
R = nrm2(R) ** 2.0
return dictionary, R
return dictionary
@_deprecate_positional_args
def dict_learning(X, n_components, *, alpha, max_iter=100, tol=1e-8,
method='lars', n_jobs=None, dict_init=None, code_init=None,
callback=None, verbose=False, random_state=None,
return_n_iter=False, positive_dict=False,
positive_code=False, method_max_iter=1000):
"""Solves a dictionary learning matrix factorization problem.
Finds the best dictionary and the corresponding sparse code for
approximating the data matrix X by solving::
(U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1
(U,V)
with || V_k ||_2 = 1 for all 0 <= k < n_components
where V is the dictionary and U is the sparse code.
Read more in the :ref:`User Guide <DictionaryLearning>`.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Data matrix.
n_components : int
Number of dictionary atoms to extract.
alpha : int
Sparsity controlling parameter.
max_iter : int, default=100
Maximum number of iterations to perform.
tol : float, default=1e-8
Tolerance for the stopping condition.
method : {'lars', 'cd'}, default='lars'
The method used:
* `'lars'`: uses the least angle regression method to solve the lasso
problem (`linear_model.lars_path`);
* `'cd'`: uses the coordinate descent method to compute the
Lasso solution (`linear_model.Lasso`). Lars will be faster if
the estimated components are sparse.
n_jobs : int, default=None
Number of parallel jobs to run.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
dict_init : ndarray of shape (n_components, n_features), default=None
Initial value for the dictionary for warm restart scenarios. Only used
if `code_init` and `dict_init` are not None.
code_init : ndarray of shape (n_samples, n_components), default=None
Initial value for the sparse code for warm restart scenarios. Only used
if `code_init` and `dict_init` are not None.
callback : callable, default=None
Callable that gets invoked every five iterations
verbose : bool, default=False
To control the verbosity of the procedure.
random_state : int, RandomState instance or None, default=None
Used for randomly initializing the dictionary. Pass an int for
reproducible results across multiple function calls.
See :term:`Glossary <random_state>`.
return_n_iter : bool, default=False
Whether or not to return the number of iterations.
positive_dict : bool, default=False
Whether to enforce positivity when finding the dictionary.
.. versionadded:: 0.20
positive_code : bool, default=False
Whether to enforce positivity when finding the code.
.. versionadded:: 0.20
method_max_iter : int, default=1000
Maximum number of iterations to perform.
.. versionadded:: 0.22
Returns
-------
code : ndarray of shape (n_samples, n_components)
The sparse code factor in the matrix factorization.
dictionary : ndarray of shape (n_components, n_features),
The dictionary factor in the matrix factorization.
errors : array
Vector of errors at each iteration.
n_iter : int
Number of iterations run. Returned only if `return_n_iter` is
set to True.
See Also
--------
dict_learning_online
DictionaryLearning
MiniBatchDictionaryLearning
SparsePCA
MiniBatchSparsePCA
"""
if method not in ('lars', 'cd'):
raise ValueError('Coding method %r not supported as a fit algorithm.'
% method)
_check_positive_coding(method, positive_code)
method = 'lasso_' + method
t0 = time.time()
# Avoid integer division problems
alpha = float(alpha)
random_state = check_random_state(random_state)
# Init the code and the dictionary with SVD of Y
if code_init is not None and dict_init is not None:
code = np.array(code_init, order='F')
# Don't copy V, it will happen below
dictionary = dict_init
else:
code, S, dictionary = linalg.svd(X, full_matrices=False)
dictionary = S[:, np.newaxis] * dictionary
r = len(dictionary)
if n_components <= r: # True even if n_components=None
code = code[:, :n_components]
dictionary = dictionary[:n_components, :]
else:
code = np.c_[code, np.zeros((len(code), n_components - r))]
dictionary = np.r_[dictionary,
np.zeros((n_components - r, dictionary.shape[1]))]
# Fortran-order dict, as we are going to access its row vectors
dictionary = np.array(dictionary, order='F')
residuals = 0
errors = []
current_cost = np.nan
if verbose == 1:
print('[dict_learning]', end=' ')
# If max_iter is 0, number of iterations returned should be zero
ii = -1
for ii in range(max_iter):
dt = (time.time() - t0)
if verbose == 1:
sys.stdout.write(".")
sys.stdout.flush()
elif verbose:
print("Iteration % 3i "
"(elapsed time: % 3is, % 4.1fmn, current cost % 7.3f)"
% (ii, dt, dt / 60, current_cost))
# Update code
code = sparse_encode(X, dictionary, algorithm=method, alpha=alpha,
init=code, n_jobs=n_jobs, positive=positive_code,
max_iter=method_max_iter, verbose=verbose)
# Update dictionary
dictionary, residuals = _update_dict(dictionary.T, X.T, code.T,
verbose=verbose, return_r2=True,
random_state=random_state,
positive=positive_dict)
dictionary = dictionary.T
# Cost function
current_cost = 0.5 * residuals + alpha * np.sum(np.abs(code))
errors.append(current_cost)
if ii > 0:
dE = errors[-2] - errors[-1]
# assert(dE >= -tol * errors[-1])
if dE < tol * errors[-1]:
if verbose == 1:
# A line return
print("")
elif verbose:
print("--- Convergence reached after %d iterations" % ii)
break
if ii % 5 == 0 and callback is not None:
callback(locals())
if return_n_iter:
return code, dictionary, errors, ii + 1
else:
return code, dictionary, errors
@_deprecate_positional_args
def dict_learning_online(X, n_components=2, *, alpha=1, n_iter=100,
return_code=True, dict_init=None, callback=None,
batch_size=3, verbose=False, shuffle=True,
n_jobs=None, method='lars', iter_offset=0,
random_state=None, return_inner_stats=False,
inner_stats=None, return_n_iter=False,
positive_dict=False, positive_code=False,
method_max_iter=1000):
"""Solves a dictionary learning matrix factorization problem online.
Finds the best dictionary and the corresponding sparse code for
approximating the data matrix X by solving::
(U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1
(U,V)
with || V_k ||_2 = 1 for all 0 <= k < n_components
where V is the dictionary and U is the sparse code. This is
accomplished by repeatedly iterating over mini-batches by slicing
the input data.
Read more in the :ref:`User Guide <DictionaryLearning>`.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Data matrix.
n_components : int, default=2
Number of dictionary atoms to extract.
alpha : float, default=1
Sparsity controlling parameter.
n_iter : int, default=100
Number of mini-batch iterations to perform.
return_code : bool, default=True
Whether to also return the code U or just the dictionary `V`.
dict_init : ndarray of shape (n_components, n_features), default=None
Initial value for the dictionary for warm restart scenarios.
callback : callable, default=None
callable that gets invoked every five iterations.
batch_size : int, default=3
The number of samples to take in each batch.
verbose : bool, default=False
To control the verbosity of the procedure.
shuffle : bool, default=True
Whether to shuffle the data before splitting it in batches.
n_jobs : int, default=None
Number of parallel jobs to run.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
method : {'lars', 'cd'}, default='lars'
* `'lars'`: uses the least angle regression method to solve the lasso
problem (`linear_model.lars_path`);
* `'cd'`: uses the coordinate descent method to compute the
Lasso solution (`linear_model.Lasso`). Lars will be faster if
the estimated components are sparse.
iter_offset : int, default=0
Number of previous iterations completed on the dictionary used for
initialization.
random_state : int, RandomState instance or None, default=None
Used for initializing the dictionary when ``dict_init`` is not
specified, randomly shuffling the data when ``shuffle`` is set to
``True``, and updating the dictionary. Pass an int for reproducible
results across multiple function calls.
See :term:`Glossary <random_state>`.
return_inner_stats : bool, default=False
Return the inner statistics A (dictionary covariance) and B
(data approximation). Useful to restart the algorithm in an
online setting. If `return_inner_stats` is `True`, `return_code` is
ignored.
inner_stats : tuple of (A, B) ndarrays, default=None
Inner sufficient statistics that are kept by the algorithm.
Passing them at initialization is useful in online settings, to
avoid losing the history of the evolution.
`A` `(n_components, n_components)` is the dictionary covariance matrix.
`B` `(n_features, n_components)` is the data approximation matrix.
return_n_iter : bool, default=False
Whether or not to return the number of iterations.
positive_dict : bool, default=False
Whether to enforce positivity when finding the dictionary.
.. versionadded:: 0.20
positive_code : bool, default=False
Whether to enforce positivity when finding the code.
.. versionadded:: 0.20
method_max_iter : int, default=1000
Maximum number of iterations to perform when solving the lasso problem.
.. versionadded:: 0.22
Returns
-------
code : ndarray of shape (n_samples, n_components),
The sparse code (only returned if `return_code=True`).
dictionary : ndarray of shape (n_components, n_features),
The solutions to the dictionary learning problem.
n_iter : int
Number of iterations run. Returned only if `return_n_iter` is
set to `True`.
See Also
--------
dict_learning
DictionaryLearning
MiniBatchDictionaryLearning
SparsePCA
MiniBatchSparsePCA
"""
if n_components is None:
n_components = X.shape[1]
if method not in ('lars', 'cd'):
raise ValueError('Coding method not supported as a fit algorithm.')
_check_positive_coding(method, positive_code)
method = 'lasso_' + method
t0 = time.time()
n_samples, n_features = X.shape
# Avoid integer division problems
alpha = float(alpha)
random_state = check_random_state(random_state)
# Init V with SVD of X
if dict_init is not None:
dictionary = dict_init
else:
_, S, dictionary = randomized_svd(X, n_components,
random_state=random_state)
dictionary = S[:, np.newaxis] * dictionary
r = len(dictionary)
if n_components <= r:
dictionary = dictionary[:n_components, :]
else:
dictionary = np.r_[dictionary,
np.zeros((n_components - r, dictionary.shape[1]))]
if verbose == 1:
print('[dict_learning]', end=' ')
if shuffle:
X_train = X.copy()
random_state.shuffle(X_train)
else:
X_train = X
dictionary = check_array(dictionary.T, order='F', dtype=np.float64,
copy=False)
dictionary = np.require(dictionary, requirements='W')
X_train = check_array(X_train, order='C', dtype=np.float64, copy=False)
batches = gen_batches(n_samples, batch_size)
batches = itertools.cycle(batches)
# The covariance of the dictionary
if inner_stats is None:
A = np.zeros((n_components, n_components))
# The data approximation
B = np.zeros((n_features, n_components))
else:
A = inner_stats[0].copy()
B = inner_stats[1].copy()
# If n_iter is zero, we need to return zero.
ii = iter_offset - 1
for ii, batch in zip(range(iter_offset, iter_offset + n_iter), batches):
this_X = X_train[batch]
dt = (time.time() - t0)
if verbose == 1:
sys.stdout.write(".")
sys.stdout.flush()
elif verbose:
if verbose > 10 or ii % ceil(100. / verbose) == 0:
print("Iteration % 3i (elapsed time: % 3is, % 4.1fmn)"
% (ii, dt, dt / 60))
this_code = sparse_encode(this_X, dictionary.T, algorithm=method,
alpha=alpha, n_jobs=n_jobs,
check_input=False,
positive=positive_code,
max_iter=method_max_iter, verbose=verbose).T
# Update the auxiliary variables
if ii < batch_size - 1:
theta = float((ii + 1) * batch_size)
else:
theta = float(batch_size ** 2 + ii + 1 - batch_size)
beta = (theta + 1 - batch_size) / (theta + 1)
A *= beta
A += np.dot(this_code, this_code.T)
B *= beta
B += np.dot(this_X.T, this_code.T)
# Update dictionary
dictionary = _update_dict(dictionary, B, A, verbose=verbose,
random_state=random_state,
positive=positive_dict)
# XXX: Can the residuals be of any use?
# Maybe we need a stopping criteria based on the amount of
# modification in the dictionary
if callback is not None:
callback(locals())
if return_inner_stats:
if return_n_iter:
return dictionary.T, (A, B), ii - iter_offset + 1
else:
return dictionary.T, (A, B)
if return_code:
if verbose > 1:
print('Learning code...', end=' ')
elif verbose == 1:
print('|', end=' ')
code = sparse_encode(X, dictionary.T, algorithm=method, alpha=alpha,
n_jobs=n_jobs, check_input=False,
positive=positive_code, max_iter=method_max_iter,
verbose=verbose)
if verbose > 1:
dt = (time.time() - t0)
print('done (total time: % 3is, % 4.1fmn)' % (dt, dt / 60))
if return_n_iter:
return code, dictionary.T, ii - iter_offset + 1
else:
return code, dictionary.T
if return_n_iter:
return dictionary.T, ii - iter_offset + 1
else:
return dictionary.T
class _BaseSparseCoding(TransformerMixin):
"""Base class from SparseCoder and DictionaryLearning algorithms."""
def __init__(self, transform_algorithm, transform_n_nonzero_coefs,
transform_alpha, split_sign, n_jobs, positive_code,
transform_max_iter):
self.transform_algorithm = transform_algorithm
self.transform_n_nonzero_coefs = transform_n_nonzero_coefs
self.transform_alpha = transform_alpha
self.transform_max_iter = transform_max_iter
self.split_sign = split_sign
self.n_jobs = n_jobs
self.positive_code = positive_code
def _transform(self, X, dictionary):
"""Private method allowing to accomodate both DictionaryLearning and
SparseCoder."""
X = self._validate_data(X, reset=False)
code = sparse_encode(
X, dictionary, algorithm=self.transform_algorithm,
n_nonzero_coefs=self.transform_n_nonzero_coefs,
alpha=self.transform_alpha, max_iter=self.transform_max_iter,
n_jobs=self.n_jobs, positive=self.positive_code)
if self.split_sign:
# feature vector is split into a positive and negative side
n_samples, n_features = code.shape
split_code = np.empty((n_samples, 2 * n_features))
split_code[:, :n_features] = np.maximum(code, 0)
split_code[:, n_features:] = -np.minimum(code, 0)
code = split_code
return code
def transform(self, X):
"""Encode the data as a sparse combination of the dictionary atoms.
Coding method is determined by the object parameter
`transform_algorithm`.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Test data to be transformed, must have the same number of
features as the data used to train the model.
Returns
-------
X_new : ndarray of shape (n_samples, n_components)
Transformed data.
"""
check_is_fitted(self)
return self._transform(X, self.components_)
class SparseCoder(_BaseSparseCoding, BaseEstimator):
"""Sparse coding
Finds a sparse representation of data against a fixed, precomputed
dictionary.
Each row of the result is the solution to a sparse coding problem.
The goal is to find a sparse array `code` such that::
X ~= code * dictionary
Read more in the :ref:`User Guide <SparseCoder>`.
Parameters
----------
dictionary : ndarray of shape (n_components, n_features)
The dictionary atoms used for sparse coding. Lines are assumed to be
normalized to unit norm.
transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \
'threshold'}, default='omp'
Algorithm used to transform the data:
- `'lars'`: uses the least angle regression method
(`linear_model.lars_path`);
- `'lasso_lars'`: uses Lars to compute the Lasso solution;
- `'lasso_cd'`: uses the coordinate descent method to compute the
Lasso solution (linear_model.Lasso). `'lasso_lars'` will be faster if
the estimated components are sparse;
- `'omp'`: uses orthogonal matching pursuit to estimate the sparse
solution;
- `'threshold'`: squashes to zero all coefficients less than alpha from
the projection ``dictionary * X'``.
transform_n_nonzero_coefs : int, default=None
Number of nonzero coefficients to target in each column of the
solution. This is only used by `algorithm='lars'` and `algorithm='omp'`
and is overridden by `alpha` in the `omp` case. If `None`, then
`transform_n_nonzero_coefs=int(n_features / 10)`.
transform_alpha : float, default=None
If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the
penalty applied to the L1 norm.
If `algorithm='threshold'`, `alpha` is the absolute value of the
threshold below which coefficients will be squashed to zero.
If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of
the reconstruction error targeted. In this case, it overrides
`n_nonzero_coefs`.
If `None`, default to 1.
split_sign : bool, default=False
Whether to split the sparse feature vector into the concatenation of
its negative part and its positive part. This can improve the
performance of downstream classifiers.
n_jobs : int, default=None
Number of parallel jobs to run.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
positive_code : bool, default=False
Whether to enforce positivity when finding the code.
.. versionadded:: 0.20
transform_max_iter : int, default=1000
Maximum number of iterations to perform if `algorithm='lasso_cd'` or
`lasso_lars`.
.. versionadded:: 0.22
Attributes
----------
components_ : ndarray of shape (n_components, n_features)
The unchanged dictionary atoms.
.. deprecated:: 0.24
This attribute is deprecated in 0.24 and will be removed in
1.1 (renaming of 0.26). Use `dictionary` instead.
Examples
--------
>>> import numpy as np
>>> from sklearn.decomposition import SparseCoder
>>> X = np.array([[-1, -1, -1], [0, 0, 3]])
>>> dictionary = np.array(
... [[0, 1, 0],
... [-1, -1, 2],
... [1, 1, 1],
... [0, 1, 1],
... [0, 2, 1]],
... dtype=np.float64
... )
>>> coder = SparseCoder(
... dictionary=dictionary, transform_algorithm='lasso_lars',
... transform_alpha=1e-10,
... )
>>> coder.transform(X)
array([[ 0., 0., -1., 0., 0.],
[ 0., 1., 1., 0., 0.]])
See Also
--------
DictionaryLearning
MiniBatchDictionaryLearning
SparsePCA
MiniBatchSparsePCA
sparse_encode
"""
_required_parameters = ["dictionary"]
@_deprecate_positional_args
def __init__(self, dictionary, *, transform_algorithm='omp',
transform_n_nonzero_coefs=None, transform_alpha=None,
split_sign=False, n_jobs=None, positive_code=False,
transform_max_iter=1000):
super().__init__(
transform_algorithm, transform_n_nonzero_coefs,
transform_alpha, split_sign, n_jobs, positive_code,
transform_max_iter
)
self.dictionary = dictionary
def fit(self, X, y=None):
"""Do nothing and return the estimator unchanged.
This method is just there to implement the usual API and hence
work in pipelines.
Parameters
----------
X : Ignored
y : Ignored
Returns
-------
self : object
"""
return self
@deprecated("The attribute 'components_' is deprecated " # type: ignore
"in 0.24 and will be removed in 1.1 (renaming of 0.26). Use "
"the 'dictionary' instead.")
@property
def components_(self):
return self.dictionary
def transform(self, X, y=None):
"""Encode the data as a sparse combination of the dictionary atoms.
Coding method is determined by the object parameter
`transform_algorithm`.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Test data to be transformed, must have the same number of
features as the data used to train the model.
y : Ignored
Returns
-------
X_new : ndarray of shape (n_samples, n_components)
Transformed data.
"""
return super()._transform(X, self.dictionary)
def _more_tags(self):
return {"requires_fit": False}
@property
def n_components_(self):
return self.dictionary.shape[0]
@property
def n_features_in_(self):
return self.dictionary.shape[1]
class DictionaryLearning(_BaseSparseCoding, BaseEstimator):
"""Dictionary learning
Finds a dictionary (a set of atoms) that can best be used to represent data
using a sparse code.
Solves the optimization problem::
(U^*,V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1
(U,V)
with || V_k ||_2 = 1 for all 0 <= k < n_components
Read more in the :ref:`User Guide <DictionaryLearning>`.
Parameters
----------
n_components : int, default=n_features
Number of dictionary elements to extract.
alpha : float, default=1.0
Sparsity controlling parameter.
max_iter : int, default=1000
Maximum number of iterations to perform.
tol : float, default=1e-8
Tolerance for numerical error.
fit_algorithm : {'lars', 'cd'}, default='lars'
* `'lars'`: uses the least angle regression method to solve the lasso
problem (:func:`~sklearn.linear_model.lars_path`);
* `'cd'`: uses the coordinate descent method to compute the
Lasso solution (:class:`~sklearn.linear_model.Lasso`). Lars will be
faster if the estimated components are sparse.
.. versionadded:: 0.17
*cd* coordinate descent method to improve speed.
transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \
'threshold'}, default='omp'
Algorithm used to transform the data:
- `'lars'`: uses the least angle regression method
(:func:`~sklearn.linear_model.lars_path`);
- `'lasso_lars'`: uses Lars to compute the Lasso solution.
- `'lasso_cd'`: uses the coordinate descent method to compute the
Lasso solution (:class:`~sklearn.linear_model.Lasso`). `'lasso_lars'`
will be faster if the estimated components are sparse.
- `'omp'`: uses orthogonal matching pursuit to estimate the sparse
solution.
- `'threshold'`: squashes to zero all coefficients less than alpha from
the projection ``dictionary * X'``.
.. versionadded:: 0.17
*lasso_cd* coordinate descent method to improve speed.
transform_n_nonzero_coefs : int, default=None
Number of nonzero coefficients to target in each column of the
solution. This is only used by `algorithm='lars'` and `algorithm='omp'`
and is overridden by `alpha` in the `omp` case. If `None`, then
`transform_n_nonzero_coefs=int(n_features / 10)`.
transform_alpha : float, default=None
If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the
penalty applied to the L1 norm.
If `algorithm='threshold'`, `alpha` is the absolute value of the
threshold below which coefficients will be squashed to zero.
If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of
the reconstruction error targeted. In this case, it overrides
`n_nonzero_coefs`.
If `None`, default to 1.0
n_jobs : int or None, default=None
Number of parallel jobs to run.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
code_init : ndarray of shape (n_samples, n_components), default=None
Initial value for the code, for warm restart. Only used if `code_init`
and `dict_init` are not None.
dict_init : ndarray of shape (n_components, n_features), default=None
Initial values for the dictionary, for warm restart. Only used if
`code_init` and `dict_init` are not None.
verbose : bool, default=False
To control the verbosity of the procedure.
split_sign : bool, default=False
Whether to split the sparse feature vector into the concatenation of
its negative part and its positive part. This can improve the
performance of downstream classifiers.
random_state : int, RandomState instance or None, default=None
Used for initializing the dictionary when ``dict_init`` is not
specified, randomly shuffling the data when ``shuffle`` is set to
``True``, and updating the dictionary. Pass an int for reproducible
results across multiple function calls.
See :term:`Glossary <random_state>`.
positive_code : bool, default=False
Whether to enforce positivity when finding the code.
.. versionadded:: 0.20
positive_dict : bool, default=False
Whether to enforce positivity when finding the dictionary
.. versionadded:: 0.20
transform_max_iter : int, default=1000
Maximum number of iterations to perform if `algorithm='lasso_cd'` or
`'lasso_lars'`.
.. versionadded:: 0.22
Attributes
----------
components_ : ndarray of shape (n_components, n_features)
dictionary atoms extracted from the data
error_ : array
vector of errors at each iteration
n_iter_ : int
Number of iterations run.
Examples
--------
>>> import numpy as np
>>> from sklearn.datasets import make_sparse_coded_signal
>>> from sklearn.decomposition import DictionaryLearning
>>> X, dictionary, code = make_sparse_coded_signal(
... n_samples=100, n_components=15, n_features=20, n_nonzero_coefs=10,
... random_state=42,
... )
>>> dict_learner = DictionaryLearning(
... n_components=15, transform_algorithm='lasso_lars', random_state=42,
... )
>>> X_transformed = dict_learner.fit_transform(X)
We can check the level of sparsity of `X_transformed`:
>>> np.mean(X_transformed == 0)
0.88...
We can compare the average squared euclidean norm of the reconstruction
error of the sparse coded signal relative to the squared euclidean norm of
the original signal:
>>> X_hat = X_transformed @ dict_learner.components_
>>> np.mean(np.sum((X_hat - X) ** 2, axis=1) / np.sum(X ** 2, axis=1))
0.07...
Notes
-----
**References:**
J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning
for sparse coding (https://www.di.ens.fr/sierra/pdfs/icml09.pdf)
See Also
--------
SparseCoder
MiniBatchDictionaryLearning
SparsePCA
MiniBatchSparsePCA
"""
@_deprecate_positional_args
def __init__(self, n_components=None, *, alpha=1, max_iter=1000, tol=1e-8,
fit_algorithm='lars', transform_algorithm='omp',
transform_n_nonzero_coefs=None, transform_alpha=None,
n_jobs=None, code_init=None, dict_init=None, verbose=False,
split_sign=False, random_state=None, positive_code=False,
positive_dict=False, transform_max_iter=1000):
super().__init__(
transform_algorithm, transform_n_nonzero_coefs,
transform_alpha, split_sign, n_jobs, positive_code,
transform_max_iter
)
self.n_components = n_components
self.alpha = alpha
self.max_iter = max_iter
self.tol = tol
self.fit_algorithm = fit_algorithm
self.code_init = code_init
self.dict_init = dict_init
self.verbose = verbose
self.random_state = random_state
self.positive_dict = positive_dict
def fit(self, X, y=None):
"""Fit the model from data in X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vector, where `n_samples` in the number of samples
and `n_features` is the number of features.
y : Ignored
Returns
-------
self : object
Returns the object itself.
"""
random_state = check_random_state(self.random_state)
X = self._validate_data(X)
if self.n_components is None:
n_components = X.shape[1]
else:
n_components = self.n_components
V, U, E, self.n_iter_ = dict_learning(
X, n_components, alpha=self.alpha,
tol=self.tol, max_iter=self.max_iter,
method=self.fit_algorithm,
method_max_iter=self.transform_max_iter,
n_jobs=self.n_jobs,
code_init=self.code_init,
dict_init=self.dict_init,
verbose=self.verbose,
random_state=random_state,
return_n_iter=True,
positive_dict=self.positive_dict,
positive_code=self.positive_code)
self.components_ = U
self.error_ = E
return self
class MiniBatchDictionaryLearning(_BaseSparseCoding, BaseEstimator):
"""Mini-batch dictionary learning
Finds a dictionary (a set of atoms) that can best be used to represent data
using a sparse code.
Solves the optimization problem::
(U^*,V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1
(U,V)
with || V_k ||_2 = 1 for all 0 <= k < n_components
Read more in the :ref:`User Guide <DictionaryLearning>`.
Parameters
----------
n_components : int, default=None
Number of dictionary elements to extract.
alpha : float, default=1
Sparsity controlling parameter.
n_iter : int, default=1000
Total number of iterations to perform.
fit_algorithm : {'lars', 'cd'}, default='lars'
The algorithm used:
- `'lars'`: uses the least angle regression method to solve the lasso
problem (`linear_model.lars_path`)
- `'cd'`: uses the coordinate descent method to compute the
Lasso solution (`linear_model.Lasso`). Lars will be faster if
the estimated components are sparse.
n_jobs : int, default=None
Number of parallel jobs to run.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
batch_size : int, default=3
Number of samples in each mini-batch.
shuffle : bool, default=True
Whether to shuffle the samples before forming batches.
dict_init : ndarray of shape (n_components, n_features), default=None
initial value of the dictionary for warm restart scenarios
transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \
'threshold'}, default='omp'
Algorithm used to transform the data:
- `'lars'`: uses the least angle regression method
(`linear_model.lars_path`);
- `'lasso_lars'`: uses Lars to compute the Lasso solution.
- `'lasso_cd'`: uses the coordinate descent method to compute the
Lasso solution (`linear_model.Lasso`). `'lasso_lars'` will be faster
if the estimated components are sparse.
- `'omp'`: uses orthogonal matching pursuit to estimate the sparse
solution.
- `'threshold'`: squashes to zero all coefficients less than alpha from
the projection ``dictionary * X'``.
transform_n_nonzero_coefs : int, default=None
Number of nonzero coefficients to target in each column of the
solution. This is only used by `algorithm='lars'` and `algorithm='omp'`
and is overridden by `alpha` in the `omp` case. If `None`, then
`transform_n_nonzero_coefs=int(n_features / 10)`.
transform_alpha : float, default=None
If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the
penalty applied to the L1 norm.
If `algorithm='threshold'`, `alpha` is the absolute value of the
threshold below which coefficients will be squashed to zero.
If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of
the reconstruction error targeted. In this case, it overrides
`n_nonzero_coefs`.
If `None`, default to 1.
verbose : bool, default=False
To control the verbosity of the procedure.
split_sign : bool, default=False
Whether to split the sparse feature vector into the concatenation of
its negative part and its positive part. This can improve the
performance of downstream classifiers.
random_state : int, RandomState instance or None, default=None
Used for initializing the dictionary when ``dict_init`` is not
specified, randomly shuffling the data when ``shuffle`` is set to
``True``, and updating the dictionary. Pass an int for reproducible
results across multiple function calls.
See :term:`Glossary <random_state>`.
positive_code : bool, default=False
Whether to enforce positivity when finding the code.
.. versionadded:: 0.20
positive_dict : bool, default=False
Whether to enforce positivity when finding the dictionary.
.. versionadded:: 0.20
transform_max_iter : int, default=1000
Maximum number of iterations to perform if `algorithm='lasso_cd'` or
`'lasso_lars'`.
.. versionadded:: 0.22
Attributes
----------
components_ : ndarray of shape (n_components, n_features)
Components extracted from the data.
inner_stats_ : tuple of (A, B) ndarrays
Internal sufficient statistics that are kept by the algorithm.
Keeping them is useful in online settings, to avoid losing the
history of the evolution, but they shouldn't have any use for the
end user.
`A` `(n_components, n_components)` is the dictionary covariance matrix.
`B` `(n_features, n_components)` is the data approximation matrix.
n_iter_ : int
Number of iterations run.
iter_offset_ : int
The number of iteration on data batches that has been
performed before.
random_state_ : RandomState instance
RandomState instance that is generated either from a seed, the random
number generattor or by `np.random`.
Examples
--------
>>> import numpy as np
>>> from sklearn.datasets import make_sparse_coded_signal
>>> from sklearn.decomposition import MiniBatchDictionaryLearning
>>> X, dictionary, code = make_sparse_coded_signal(
... n_samples=100, n_components=15, n_features=20, n_nonzero_coefs=10,
... random_state=42)
>>> dict_learner = MiniBatchDictionaryLearning(
... n_components=15, transform_algorithm='lasso_lars', random_state=42,
... )
>>> X_transformed = dict_learner.fit_transform(X)
We can check the level of sparsity of `X_transformed`:
>>> np.mean(X_transformed == 0)
0.87...
We can compare the average squared euclidean norm of the reconstruction
error of the sparse coded signal relative to the squared euclidean norm of
the original signal:
>>> X_hat = X_transformed @ dict_learner.components_
>>> np.mean(np.sum((X_hat - X) ** 2, axis=1) / np.sum(X ** 2, axis=1))
0.10...
Notes
-----
**References:**
J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning
for sparse coding (https://www.di.ens.fr/sierra/pdfs/icml09.pdf)
See Also
--------
SparseCoder
DictionaryLearning
SparsePCA
MiniBatchSparsePCA
"""
@_deprecate_positional_args
def __init__(self, n_components=None, *, alpha=1, n_iter=1000,
fit_algorithm='lars', n_jobs=None, batch_size=3, shuffle=True,
dict_init=None, transform_algorithm='omp',
transform_n_nonzero_coefs=None, transform_alpha=None,
verbose=False, split_sign=False, random_state=None,
positive_code=False, positive_dict=False,
transform_max_iter=1000):
super().__init__(
transform_algorithm, transform_n_nonzero_coefs, transform_alpha,
split_sign, n_jobs, positive_code, transform_max_iter
)
self.n_components = n_components
self.alpha = alpha
self.n_iter = n_iter
self.fit_algorithm = fit_algorithm
self.dict_init = dict_init
self.verbose = verbose
self.shuffle = shuffle
self.batch_size = batch_size
self.split_sign = split_sign
self.random_state = random_state
self.positive_dict = positive_dict
def fit(self, X, y=None):
"""Fit the model from data in X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
y : Ignored
Returns
-------
self : object
Returns the instance itself.
"""
random_state = check_random_state(self.random_state)
X = self._validate_data(X)
U, (A, B), self.n_iter_ = dict_learning_online(
X, self.n_components, alpha=self.alpha,
n_iter=self.n_iter, return_code=False,
method=self.fit_algorithm,
method_max_iter=self.transform_max_iter,
n_jobs=self.n_jobs, dict_init=self.dict_init,
batch_size=self.batch_size, shuffle=self.shuffle,
verbose=self.verbose, random_state=random_state,
return_inner_stats=True,
return_n_iter=True,
positive_dict=self.positive_dict,
positive_code=self.positive_code)
self.components_ = U
# Keep track of the state of the algorithm to be able to do
# some online fitting (partial_fit)
self.inner_stats_ = (A, B)
self.iter_offset_ = self.n_iter
self.random_state_ = random_state
return self
def partial_fit(self, X, y=None, iter_offset=None):
"""Updates the model using the data in X as a mini-batch.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
y : Ignored
iter_offset : int, default=None
The number of iteration on data batches that has been
performed before this call to partial_fit. This is optional:
if no number is passed, the memory of the object is
used.
Returns
-------
self : object
Returns the instance itself.
"""
if not hasattr(self, 'random_state_'):
self.random_state_ = check_random_state(self.random_state)
if hasattr(self, 'components_'):
dict_init = self.components_
else:
dict_init = self.dict_init
inner_stats = getattr(self, 'inner_stats_', None)
if iter_offset is None:
iter_offset = getattr(self, 'iter_offset_', 0)
X = self._validate_data(X, reset=(iter_offset == 0))
U, (A, B) = dict_learning_online(
X, self.n_components, alpha=self.alpha,
n_iter=1, method=self.fit_algorithm,
method_max_iter=self.transform_max_iter,
n_jobs=self.n_jobs, dict_init=dict_init,
batch_size=len(X), shuffle=False,
verbose=self.verbose, return_code=False,
iter_offset=iter_offset, random_state=self.random_state_,
return_inner_stats=True, inner_stats=inner_stats,
positive_dict=self.positive_dict,
positive_code=self.positive_code)
self.components_ = U
# Keep track of the state of the algorithm to be able to do
# some online fitting (partial_fit)
self.inner_stats_ = (A, B)
self.iter_offset_ = iter_offset + 1
return self