116 lines
4.1 KiB
Python
116 lines
4.1 KiB
Python
|
import pytest
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy import sparse
|
||
|
|
||
|
from sklearn.utils._testing import assert_allclose
|
||
|
from sklearn.utils._testing import assert_allclose_dense_sparse
|
||
|
from sklearn.utils._testing import assert_array_equal
|
||
|
|
||
|
from sklearn.experimental import enable_iterative_imputer # noqa
|
||
|
|
||
|
from sklearn.impute import IterativeImputer
|
||
|
from sklearn.impute import KNNImputer
|
||
|
from sklearn.impute import SimpleImputer
|
||
|
|
||
|
|
||
|
IMPUTERS = [IterativeImputer(), KNNImputer(), SimpleImputer()]
|
||
|
SPARSE_IMPUTERS = [SimpleImputer()]
|
||
|
|
||
|
|
||
|
# ConvergenceWarning will be raised by the IterativeImputer
|
||
|
@pytest.mark.filterwarnings("ignore::sklearn.exceptions.ConvergenceWarning")
|
||
|
@pytest.mark.parametrize("imputer", IMPUTERS)
|
||
|
def test_imputation_missing_value_in_test_array(imputer):
|
||
|
# [Non Regression Test for issue #13968] Missing value in test set should
|
||
|
# not throw an error and return a finite dataset
|
||
|
train = [[1], [2]]
|
||
|
test = [[3], [np.nan]]
|
||
|
imputer.set_params(add_indicator=True)
|
||
|
imputer.fit(train).transform(test)
|
||
|
|
||
|
|
||
|
# ConvergenceWarning will be raised by the IterativeImputer
|
||
|
@pytest.mark.filterwarnings("ignore::sklearn.exceptions.ConvergenceWarning")
|
||
|
@pytest.mark.parametrize("marker", [np.nan, -1, 0])
|
||
|
@pytest.mark.parametrize("imputer", IMPUTERS)
|
||
|
def test_imputers_add_indicator(marker, imputer):
|
||
|
X = np.array([
|
||
|
[marker, 1, 5, marker, 1],
|
||
|
[2, marker, 1, marker, 2],
|
||
|
[6, 3, marker, marker, 3],
|
||
|
[1, 2, 9, marker, 4]
|
||
|
])
|
||
|
X_true_indicator = np.array([
|
||
|
[1., 0., 0., 1.],
|
||
|
[0., 1., 0., 1.],
|
||
|
[0., 0., 1., 1.],
|
||
|
[0., 0., 0., 1.]
|
||
|
])
|
||
|
imputer.set_params(missing_values=marker, add_indicator=True)
|
||
|
|
||
|
X_trans = imputer.fit_transform(X)
|
||
|
assert_allclose(X_trans[:, -4:], X_true_indicator)
|
||
|
assert_array_equal(imputer.indicator_.features_, np.array([0, 1, 2, 3]))
|
||
|
|
||
|
imputer.set_params(add_indicator=False)
|
||
|
X_trans_no_indicator = imputer.fit_transform(X)
|
||
|
assert_allclose(X_trans[:, :-4], X_trans_no_indicator)
|
||
|
|
||
|
|
||
|
# ConvergenceWarning will be raised by the IterativeImputer
|
||
|
@pytest.mark.filterwarnings("ignore::sklearn.exceptions.ConvergenceWarning")
|
||
|
@pytest.mark.parametrize("marker", [np.nan, -1])
|
||
|
@pytest.mark.parametrize("imputer", SPARSE_IMPUTERS)
|
||
|
def test_imputers_add_indicator_sparse(imputer, marker):
|
||
|
X = sparse.csr_matrix([
|
||
|
[marker, 1, 5, marker, 1],
|
||
|
[2, marker, 1, marker, 2],
|
||
|
[6, 3, marker, marker, 3],
|
||
|
[1, 2, 9, marker, 4]
|
||
|
])
|
||
|
X_true_indicator = sparse.csr_matrix([
|
||
|
[1., 0., 0., 1.],
|
||
|
[0., 1., 0., 1.],
|
||
|
[0., 0., 1., 1.],
|
||
|
[0., 0., 0., 1.]
|
||
|
])
|
||
|
imputer.set_params(missing_values=marker, add_indicator=True)
|
||
|
|
||
|
X_trans = imputer.fit_transform(X)
|
||
|
assert_allclose_dense_sparse(X_trans[:, -4:], X_true_indicator)
|
||
|
assert_array_equal(imputer.indicator_.features_, np.array([0, 1, 2, 3]))
|
||
|
|
||
|
imputer.set_params(add_indicator=False)
|
||
|
X_trans_no_indicator = imputer.fit_transform(X)
|
||
|
assert_allclose_dense_sparse(X_trans[:, :-4], X_trans_no_indicator)
|
||
|
|
||
|
|
||
|
# ConvergenceWarning will be raised by the IterativeImputer
|
||
|
@pytest.mark.filterwarnings("ignore::sklearn.exceptions.ConvergenceWarning")
|
||
|
@pytest.mark.parametrize("imputer", IMPUTERS)
|
||
|
@pytest.mark.parametrize("add_indicator", [True, False])
|
||
|
def test_imputers_pandas_na_integer_array_support(imputer, add_indicator):
|
||
|
# Test pandas IntegerArray with pd.NA
|
||
|
pd = pytest.importorskip('pandas', minversion="1.0")
|
||
|
marker = np.nan
|
||
|
imputer = imputer.set_params(add_indicator=add_indicator,
|
||
|
missing_values=marker)
|
||
|
|
||
|
X = np.array([
|
||
|
[marker, 1, 5, marker, 1],
|
||
|
[2, marker, 1, marker, 2],
|
||
|
[6, 3, marker, marker, 3],
|
||
|
[1, 2, 9, marker, 4]
|
||
|
])
|
||
|
# fit on numpy array
|
||
|
X_trans_expected = imputer.fit_transform(X)
|
||
|
|
||
|
# Creates dataframe with IntegerArrays with pd.NA
|
||
|
X_df = pd.DataFrame(X, dtype="Int16", columns=["a", "b", "c", "d", "e"])
|
||
|
|
||
|
# fit on pandas dataframe with IntegerArrays
|
||
|
X_trans = imputer.fit_transform(X_df)
|
||
|
|
||
|
assert_allclose(X_trans_expected, X_trans)
|