871 lines
30 KiB
Python
871 lines
30 KiB
Python
|
import io
|
||
|
from types import SimpleNamespace
|
||
|
|
||
|
import numpy as np
|
||
|
from numpy.testing import assert_array_equal, assert_array_almost_equal
|
||
|
import pytest
|
||
|
|
||
|
import matplotlib as mpl
|
||
|
import matplotlib.pyplot as plt
|
||
|
import matplotlib.collections as mcollections
|
||
|
import matplotlib.colors as mcolors
|
||
|
import matplotlib.transforms as mtransforms
|
||
|
from matplotlib.collections import (Collection, LineCollection,
|
||
|
EventCollection, PolyCollection)
|
||
|
from matplotlib.testing.decorators import check_figures_equal, image_comparison
|
||
|
from matplotlib._api.deprecation import MatplotlibDeprecationWarning
|
||
|
|
||
|
|
||
|
def generate_EventCollection_plot():
|
||
|
"""Generate the initial collection and plot it."""
|
||
|
positions = np.array([0., 1., 2., 3., 5., 8., 13., 21.])
|
||
|
extra_positions = np.array([34., 55., 89.])
|
||
|
orientation = 'horizontal'
|
||
|
lineoffset = 1
|
||
|
linelength = .5
|
||
|
linewidth = 2
|
||
|
color = [1, 0, 0, 1]
|
||
|
linestyle = 'solid'
|
||
|
antialiased = True
|
||
|
|
||
|
coll = EventCollection(positions,
|
||
|
orientation=orientation,
|
||
|
lineoffset=lineoffset,
|
||
|
linelength=linelength,
|
||
|
linewidth=linewidth,
|
||
|
color=color,
|
||
|
linestyle=linestyle,
|
||
|
antialiased=antialiased
|
||
|
)
|
||
|
|
||
|
fig, ax = plt.subplots()
|
||
|
ax.add_collection(coll)
|
||
|
ax.set_title('EventCollection: default')
|
||
|
props = {'positions': positions,
|
||
|
'extra_positions': extra_positions,
|
||
|
'orientation': orientation,
|
||
|
'lineoffset': lineoffset,
|
||
|
'linelength': linelength,
|
||
|
'linewidth': linewidth,
|
||
|
'color': color,
|
||
|
'linestyle': linestyle,
|
||
|
'antialiased': antialiased
|
||
|
}
|
||
|
ax.set_xlim(-1, 22)
|
||
|
ax.set_ylim(0, 2)
|
||
|
return ax, coll, props
|
||
|
|
||
|
|
||
|
@image_comparison(['EventCollection_plot__default'])
|
||
|
def test__EventCollection__get_props():
|
||
|
_, coll, props = generate_EventCollection_plot()
|
||
|
# check that the default segments have the correct coordinates
|
||
|
check_segments(coll,
|
||
|
props['positions'],
|
||
|
props['linelength'],
|
||
|
props['lineoffset'],
|
||
|
props['orientation'])
|
||
|
# check that the default positions match the input positions
|
||
|
np.testing.assert_array_equal(props['positions'], coll.get_positions())
|
||
|
# check that the default orientation matches the input orientation
|
||
|
assert props['orientation'] == coll.get_orientation()
|
||
|
# check that the default orientation matches the input orientation
|
||
|
assert coll.is_horizontal()
|
||
|
# check that the default linelength matches the input linelength
|
||
|
assert props['linelength'] == coll.get_linelength()
|
||
|
# check that the default lineoffset matches the input lineoffset
|
||
|
assert props['lineoffset'] == coll.get_lineoffset()
|
||
|
# check that the default linestyle matches the input linestyle
|
||
|
assert coll.get_linestyle() == [(0, None)]
|
||
|
# check that the default color matches the input color
|
||
|
for color in [coll.get_color(), *coll.get_colors()]:
|
||
|
np.testing.assert_array_equal(color, props['color'])
|
||
|
|
||
|
|
||
|
@image_comparison(['EventCollection_plot__set_positions'])
|
||
|
def test__EventCollection__set_positions():
|
||
|
splt, coll, props = generate_EventCollection_plot()
|
||
|
new_positions = np.hstack([props['positions'], props['extra_positions']])
|
||
|
coll.set_positions(new_positions)
|
||
|
np.testing.assert_array_equal(new_positions, coll.get_positions())
|
||
|
check_segments(coll, new_positions,
|
||
|
props['linelength'],
|
||
|
props['lineoffset'],
|
||
|
props['orientation'])
|
||
|
splt.set_title('EventCollection: set_positions')
|
||
|
splt.set_xlim(-1, 90)
|
||
|
|
||
|
|
||
|
@image_comparison(['EventCollection_plot__add_positions'])
|
||
|
def test__EventCollection__add_positions():
|
||
|
splt, coll, props = generate_EventCollection_plot()
|
||
|
new_positions = np.hstack([props['positions'],
|
||
|
props['extra_positions'][0]])
|
||
|
coll.switch_orientation() # Test adding in the vertical orientation, too.
|
||
|
coll.add_positions(props['extra_positions'][0])
|
||
|
coll.switch_orientation()
|
||
|
np.testing.assert_array_equal(new_positions, coll.get_positions())
|
||
|
check_segments(coll,
|
||
|
new_positions,
|
||
|
props['linelength'],
|
||
|
props['lineoffset'],
|
||
|
props['orientation'])
|
||
|
splt.set_title('EventCollection: add_positions')
|
||
|
splt.set_xlim(-1, 35)
|
||
|
|
||
|
|
||
|
@image_comparison(['EventCollection_plot__append_positions'])
|
||
|
def test__EventCollection__append_positions():
|
||
|
splt, coll, props = generate_EventCollection_plot()
|
||
|
new_positions = np.hstack([props['positions'],
|
||
|
props['extra_positions'][2]])
|
||
|
coll.append_positions(props['extra_positions'][2])
|
||
|
np.testing.assert_array_equal(new_positions, coll.get_positions())
|
||
|
check_segments(coll,
|
||
|
new_positions,
|
||
|
props['linelength'],
|
||
|
props['lineoffset'],
|
||
|
props['orientation'])
|
||
|
splt.set_title('EventCollection: append_positions')
|
||
|
splt.set_xlim(-1, 90)
|
||
|
|
||
|
|
||
|
@image_comparison(['EventCollection_plot__extend_positions'])
|
||
|
def test__EventCollection__extend_positions():
|
||
|
splt, coll, props = generate_EventCollection_plot()
|
||
|
new_positions = np.hstack([props['positions'],
|
||
|
props['extra_positions'][1:]])
|
||
|
coll.extend_positions(props['extra_positions'][1:])
|
||
|
np.testing.assert_array_equal(new_positions, coll.get_positions())
|
||
|
check_segments(coll,
|
||
|
new_positions,
|
||
|
props['linelength'],
|
||
|
props['lineoffset'],
|
||
|
props['orientation'])
|
||
|
splt.set_title('EventCollection: extend_positions')
|
||
|
splt.set_xlim(-1, 90)
|
||
|
|
||
|
|
||
|
@image_comparison(['EventCollection_plot__switch_orientation'])
|
||
|
def test__EventCollection__switch_orientation():
|
||
|
splt, coll, props = generate_EventCollection_plot()
|
||
|
new_orientation = 'vertical'
|
||
|
coll.switch_orientation()
|
||
|
assert new_orientation == coll.get_orientation()
|
||
|
assert not coll.is_horizontal()
|
||
|
new_positions = coll.get_positions()
|
||
|
check_segments(coll,
|
||
|
new_positions,
|
||
|
props['linelength'],
|
||
|
props['lineoffset'], new_orientation)
|
||
|
splt.set_title('EventCollection: switch_orientation')
|
||
|
splt.set_ylim(-1, 22)
|
||
|
splt.set_xlim(0, 2)
|
||
|
|
||
|
|
||
|
@image_comparison(['EventCollection_plot__switch_orientation__2x'])
|
||
|
def test__EventCollection__switch_orientation_2x():
|
||
|
"""
|
||
|
Check that calling switch_orientation twice sets the orientation back to
|
||
|
the default.
|
||
|
"""
|
||
|
splt, coll, props = generate_EventCollection_plot()
|
||
|
coll.switch_orientation()
|
||
|
coll.switch_orientation()
|
||
|
new_positions = coll.get_positions()
|
||
|
assert props['orientation'] == coll.get_orientation()
|
||
|
assert coll.is_horizontal()
|
||
|
np.testing.assert_array_equal(props['positions'], new_positions)
|
||
|
check_segments(coll,
|
||
|
new_positions,
|
||
|
props['linelength'],
|
||
|
props['lineoffset'],
|
||
|
props['orientation'])
|
||
|
splt.set_title('EventCollection: switch_orientation 2x')
|
||
|
|
||
|
|
||
|
@image_comparison(['EventCollection_plot__set_orientation'])
|
||
|
def test__EventCollection__set_orientation():
|
||
|
splt, coll, props = generate_EventCollection_plot()
|
||
|
new_orientation = 'vertical'
|
||
|
coll.set_orientation(new_orientation)
|
||
|
assert new_orientation == coll.get_orientation()
|
||
|
assert not coll.is_horizontal()
|
||
|
check_segments(coll,
|
||
|
props['positions'],
|
||
|
props['linelength'],
|
||
|
props['lineoffset'],
|
||
|
new_orientation)
|
||
|
splt.set_title('EventCollection: set_orientation')
|
||
|
splt.set_ylim(-1, 22)
|
||
|
splt.set_xlim(0, 2)
|
||
|
|
||
|
|
||
|
@image_comparison(['EventCollection_plot__set_linelength'])
|
||
|
def test__EventCollection__set_linelength():
|
||
|
splt, coll, props = generate_EventCollection_plot()
|
||
|
new_linelength = 15
|
||
|
coll.set_linelength(new_linelength)
|
||
|
assert new_linelength == coll.get_linelength()
|
||
|
check_segments(coll,
|
||
|
props['positions'],
|
||
|
new_linelength,
|
||
|
props['lineoffset'],
|
||
|
props['orientation'])
|
||
|
splt.set_title('EventCollection: set_linelength')
|
||
|
splt.set_ylim(-20, 20)
|
||
|
|
||
|
|
||
|
@image_comparison(['EventCollection_plot__set_lineoffset'])
|
||
|
def test__EventCollection__set_lineoffset():
|
||
|
splt, coll, props = generate_EventCollection_plot()
|
||
|
new_lineoffset = -5.
|
||
|
coll.set_lineoffset(new_lineoffset)
|
||
|
assert new_lineoffset == coll.get_lineoffset()
|
||
|
check_segments(coll,
|
||
|
props['positions'],
|
||
|
props['linelength'],
|
||
|
new_lineoffset,
|
||
|
props['orientation'])
|
||
|
splt.set_title('EventCollection: set_lineoffset')
|
||
|
splt.set_ylim(-6, -4)
|
||
|
|
||
|
|
||
|
@image_comparison([
|
||
|
'EventCollection_plot__set_linestyle',
|
||
|
'EventCollection_plot__set_linestyle',
|
||
|
'EventCollection_plot__set_linewidth',
|
||
|
])
|
||
|
def test__EventCollection__set_prop():
|
||
|
for prop, value, expected in [
|
||
|
('linestyle', 'dashed', [(0, (6.0, 6.0))]),
|
||
|
('linestyle', (0, (6., 6.)), [(0, (6.0, 6.0))]),
|
||
|
('linewidth', 5, 5),
|
||
|
]:
|
||
|
splt, coll, _ = generate_EventCollection_plot()
|
||
|
coll.set(**{prop: value})
|
||
|
assert plt.getp(coll, prop) == expected
|
||
|
splt.set_title(f'EventCollection: set_{prop}')
|
||
|
|
||
|
|
||
|
@image_comparison(['EventCollection_plot__set_color'])
|
||
|
def test__EventCollection__set_color():
|
||
|
splt, coll, _ = generate_EventCollection_plot()
|
||
|
new_color = np.array([0, 1, 1, 1])
|
||
|
coll.set_color(new_color)
|
||
|
for color in [coll.get_color(), *coll.get_colors()]:
|
||
|
np.testing.assert_array_equal(color, new_color)
|
||
|
splt.set_title('EventCollection: set_color')
|
||
|
|
||
|
|
||
|
def check_segments(coll, positions, linelength, lineoffset, orientation):
|
||
|
"""
|
||
|
Test helper checking that all values in the segment are correct, given a
|
||
|
particular set of inputs.
|
||
|
"""
|
||
|
segments = coll.get_segments()
|
||
|
if (orientation.lower() == 'horizontal'
|
||
|
or orientation.lower() == 'none' or orientation is None):
|
||
|
# if horizontal, the position in is in the y-axis
|
||
|
pos1 = 1
|
||
|
pos2 = 0
|
||
|
elif orientation.lower() == 'vertical':
|
||
|
# if vertical, the position in is in the x-axis
|
||
|
pos1 = 0
|
||
|
pos2 = 1
|
||
|
else:
|
||
|
raise ValueError("orientation must be 'horizontal' or 'vertical'")
|
||
|
|
||
|
# test to make sure each segment is correct
|
||
|
for i, segment in enumerate(segments):
|
||
|
assert segment[0, pos1] == lineoffset + linelength / 2
|
||
|
assert segment[1, pos1] == lineoffset - linelength / 2
|
||
|
assert segment[0, pos2] == positions[i]
|
||
|
assert segment[1, pos2] == positions[i]
|
||
|
|
||
|
|
||
|
def test_null_collection_datalim():
|
||
|
col = mcollections.PathCollection([])
|
||
|
col_data_lim = col.get_datalim(mtransforms.IdentityTransform())
|
||
|
assert_array_equal(col_data_lim.get_points(),
|
||
|
mtransforms.Bbox.null().get_points())
|
||
|
|
||
|
|
||
|
def test_add_collection():
|
||
|
# Test if data limits are unchanged by adding an empty collection.
|
||
|
# GitHub issue #1490, pull #1497.
|
||
|
plt.figure()
|
||
|
ax = plt.axes()
|
||
|
coll = ax.scatter([0, 1], [0, 1])
|
||
|
ax.add_collection(coll)
|
||
|
bounds = ax.dataLim.bounds
|
||
|
coll = ax.scatter([], [])
|
||
|
assert ax.dataLim.bounds == bounds
|
||
|
|
||
|
|
||
|
@pytest.mark.style('mpl20')
|
||
|
@check_figures_equal(extensions=['png'])
|
||
|
def test_collection_log_datalim(fig_test, fig_ref):
|
||
|
# Data limits should respect the minimum x/y when using log scale.
|
||
|
x_vals = [4.38462e-6, 5.54929e-6, 7.02332e-6, 8.88889e-6, 1.12500e-5,
|
||
|
1.42383e-5, 1.80203e-5, 2.28070e-5, 2.88651e-5, 3.65324e-5,
|
||
|
4.62363e-5, 5.85178e-5, 7.40616e-5, 9.37342e-5, 1.18632e-4]
|
||
|
y_vals = [0.0, 0.1, 0.182, 0.332, 0.604, 1.1, 2.0, 3.64, 6.64, 12.1, 22.0,
|
||
|
39.6, 71.3]
|
||
|
|
||
|
x, y = np.meshgrid(x_vals, y_vals)
|
||
|
x = x.flatten()
|
||
|
y = y.flatten()
|
||
|
|
||
|
ax_test = fig_test.subplots()
|
||
|
ax_test.set_xscale('log')
|
||
|
ax_test.set_yscale('log')
|
||
|
ax_test.margins = 0
|
||
|
ax_test.scatter(x, y)
|
||
|
|
||
|
ax_ref = fig_ref.subplots()
|
||
|
ax_ref.set_xscale('log')
|
||
|
ax_ref.set_yscale('log')
|
||
|
ax_ref.plot(x, y, marker="o", ls="")
|
||
|
|
||
|
|
||
|
def test_quiver_limits():
|
||
|
ax = plt.axes()
|
||
|
x, y = np.arange(8), np.arange(10)
|
||
|
u = v = np.linspace(0, 10, 80).reshape(10, 8)
|
||
|
q = plt.quiver(x, y, u, v)
|
||
|
assert q.get_datalim(ax.transData).bounds == (0., 0., 7., 9.)
|
||
|
|
||
|
plt.figure()
|
||
|
ax = plt.axes()
|
||
|
x = np.linspace(-5, 10, 20)
|
||
|
y = np.linspace(-2, 4, 10)
|
||
|
y, x = np.meshgrid(y, x)
|
||
|
trans = mtransforms.Affine2D().translate(25, 32) + ax.transData
|
||
|
plt.quiver(x, y, np.sin(x), np.cos(y), transform=trans)
|
||
|
assert ax.dataLim.bounds == (20.0, 30.0, 15.0, 6.0)
|
||
|
|
||
|
|
||
|
def test_barb_limits():
|
||
|
ax = plt.axes()
|
||
|
x = np.linspace(-5, 10, 20)
|
||
|
y = np.linspace(-2, 4, 10)
|
||
|
y, x = np.meshgrid(y, x)
|
||
|
trans = mtransforms.Affine2D().translate(25, 32) + ax.transData
|
||
|
plt.barbs(x, y, np.sin(x), np.cos(y), transform=trans)
|
||
|
# The calculated bounds are approximately the bounds of the original data,
|
||
|
# this is because the entire path is taken into account when updating the
|
||
|
# datalim.
|
||
|
assert_array_almost_equal(ax.dataLim.bounds, (20, 30, 15, 6),
|
||
|
decimal=1)
|
||
|
|
||
|
|
||
|
@image_comparison(['EllipseCollection_test_image.png'], remove_text=True)
|
||
|
def test_EllipseCollection():
|
||
|
# Test basic functionality
|
||
|
fig, ax = plt.subplots()
|
||
|
x = np.arange(4)
|
||
|
y = np.arange(3)
|
||
|
X, Y = np.meshgrid(x, y)
|
||
|
XY = np.vstack((X.ravel(), Y.ravel())).T
|
||
|
|
||
|
ww = X / x[-1]
|
||
|
hh = Y / y[-1]
|
||
|
aa = np.ones_like(ww) * 20 # first axis is 20 degrees CCW from x axis
|
||
|
|
||
|
ec = mcollections.EllipseCollection(ww, hh, aa,
|
||
|
units='x',
|
||
|
offsets=XY,
|
||
|
transOffset=ax.transData,
|
||
|
facecolors='none')
|
||
|
ax.add_collection(ec)
|
||
|
ax.autoscale_view()
|
||
|
|
||
|
|
||
|
@image_comparison(['polycollection_close.png'], remove_text=True)
|
||
|
def test_polycollection_close():
|
||
|
from mpl_toolkits.mplot3d import Axes3D
|
||
|
|
||
|
vertsQuad = [
|
||
|
[[0., 0.], [0., 1.], [1., 1.], [1., 0.]],
|
||
|
[[0., 1.], [2., 3.], [2., 2.], [1., 1.]],
|
||
|
[[2., 2.], [2., 3.], [4., 1.], [3., 1.]],
|
||
|
[[3., 0.], [3., 1.], [4., 1.], [4., 0.]]]
|
||
|
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_axes(Axes3D(fig, auto_add_to_figure=False))
|
||
|
|
||
|
colors = ['r', 'g', 'b', 'y', 'k']
|
||
|
zpos = list(range(5))
|
||
|
|
||
|
poly = mcollections.PolyCollection(
|
||
|
vertsQuad * len(zpos), linewidth=0.25)
|
||
|
poly.set_alpha(0.7)
|
||
|
|
||
|
# need to have a z-value for *each* polygon = element!
|
||
|
zs = []
|
||
|
cs = []
|
||
|
for z, c in zip(zpos, colors):
|
||
|
zs.extend([z] * len(vertsQuad))
|
||
|
cs.extend([c] * len(vertsQuad))
|
||
|
|
||
|
poly.set_color(cs)
|
||
|
|
||
|
ax.add_collection3d(poly, zs=zs, zdir='y')
|
||
|
|
||
|
# axis limit settings:
|
||
|
ax.set_xlim3d(0, 4)
|
||
|
ax.set_zlim3d(0, 3)
|
||
|
ax.set_ylim3d(0, 4)
|
||
|
|
||
|
|
||
|
@image_comparison(['regularpolycollection_rotate.png'], remove_text=True)
|
||
|
def test_regularpolycollection_rotate():
|
||
|
xx, yy = np.mgrid[:10, :10]
|
||
|
xy_points = np.transpose([xx.flatten(), yy.flatten()])
|
||
|
rotations = np.linspace(0, 2*np.pi, len(xy_points))
|
||
|
|
||
|
fig, ax = plt.subplots()
|
||
|
for xy, alpha in zip(xy_points, rotations):
|
||
|
col = mcollections.RegularPolyCollection(
|
||
|
4, sizes=(100,), rotation=alpha,
|
||
|
offsets=[xy], transOffset=ax.transData)
|
||
|
ax.add_collection(col, autolim=True)
|
||
|
ax.autoscale_view()
|
||
|
|
||
|
|
||
|
@image_comparison(['regularpolycollection_scale.png'], remove_text=True)
|
||
|
def test_regularpolycollection_scale():
|
||
|
# See issue #3860
|
||
|
|
||
|
class SquareCollection(mcollections.RegularPolyCollection):
|
||
|
def __init__(self, **kwargs):
|
||
|
super().__init__(4, rotation=np.pi/4., **kwargs)
|
||
|
|
||
|
def get_transform(self):
|
||
|
"""Return transform scaling circle areas to data space."""
|
||
|
ax = self.axes
|
||
|
|
||
|
pts2pixels = 72.0 / ax.figure.dpi
|
||
|
|
||
|
scale_x = pts2pixels * ax.bbox.width / ax.viewLim.width
|
||
|
scale_y = pts2pixels * ax.bbox.height / ax.viewLim.height
|
||
|
return mtransforms.Affine2D().scale(scale_x, scale_y)
|
||
|
|
||
|
fig, ax = plt.subplots()
|
||
|
|
||
|
xy = [(0, 0)]
|
||
|
# Unit square has a half-diagonal of `1/sqrt(2)`, so `pi * r**2` equals...
|
||
|
circle_areas = [np.pi / 2]
|
||
|
squares = SquareCollection(sizes=circle_areas, offsets=xy,
|
||
|
transOffset=ax.transData)
|
||
|
ax.add_collection(squares, autolim=True)
|
||
|
ax.axis([-1, 1, -1, 1])
|
||
|
|
||
|
|
||
|
def test_picking():
|
||
|
fig, ax = plt.subplots()
|
||
|
col = ax.scatter([0], [0], [1000], picker=True)
|
||
|
fig.savefig(io.BytesIO(), dpi=fig.dpi)
|
||
|
mouse_event = SimpleNamespace(x=325, y=240)
|
||
|
found, indices = col.contains(mouse_event)
|
||
|
assert found
|
||
|
assert_array_equal(indices['ind'], [0])
|
||
|
|
||
|
|
||
|
def test_linestyle_single_dashes():
|
||
|
plt.scatter([0, 1, 2], [0, 1, 2], linestyle=(0., [2., 2.]))
|
||
|
plt.draw()
|
||
|
|
||
|
|
||
|
@image_comparison(['size_in_xy.png'], remove_text=True)
|
||
|
def test_size_in_xy():
|
||
|
fig, ax = plt.subplots()
|
||
|
|
||
|
widths, heights, angles = (10, 10), 10, 0
|
||
|
widths = 10, 10
|
||
|
coords = [(10, 10), (15, 15)]
|
||
|
e = mcollections.EllipseCollection(
|
||
|
widths, heights, angles,
|
||
|
units='xy',
|
||
|
offsets=coords,
|
||
|
transOffset=ax.transData)
|
||
|
|
||
|
ax.add_collection(e)
|
||
|
|
||
|
ax.set_xlim(0, 30)
|
||
|
ax.set_ylim(0, 30)
|
||
|
|
||
|
|
||
|
def test_pandas_indexing(pd):
|
||
|
|
||
|
# Should not fail break when faced with a
|
||
|
# non-zero indexed series
|
||
|
index = [11, 12, 13]
|
||
|
ec = fc = pd.Series(['red', 'blue', 'green'], index=index)
|
||
|
lw = pd.Series([1, 2, 3], index=index)
|
||
|
ls = pd.Series(['solid', 'dashed', 'dashdot'], index=index)
|
||
|
aa = pd.Series([True, False, True], index=index)
|
||
|
|
||
|
Collection(edgecolors=ec)
|
||
|
Collection(facecolors=fc)
|
||
|
Collection(linewidths=lw)
|
||
|
Collection(linestyles=ls)
|
||
|
Collection(antialiaseds=aa)
|
||
|
|
||
|
|
||
|
@pytest.mark.style('default')
|
||
|
def test_lslw_bcast():
|
||
|
col = mcollections.PathCollection([])
|
||
|
col.set_linestyles(['-', '-'])
|
||
|
col.set_linewidths([1, 2, 3])
|
||
|
|
||
|
assert col.get_linestyles() == [(0, None)] * 6
|
||
|
assert col.get_linewidths() == [1, 2, 3] * 2
|
||
|
|
||
|
col.set_linestyles(['-', '-', '-'])
|
||
|
assert col.get_linestyles() == [(0, None)] * 3
|
||
|
assert (col.get_linewidths() == [1, 2, 3]).all()
|
||
|
|
||
|
|
||
|
@pytest.mark.style('default')
|
||
|
def test_capstyle():
|
||
|
col = mcollections.PathCollection([], capstyle='round')
|
||
|
assert col.get_capstyle() == 'round'
|
||
|
col.set_capstyle('butt')
|
||
|
assert col.get_capstyle() == 'butt'
|
||
|
|
||
|
|
||
|
@pytest.mark.style('default')
|
||
|
def test_joinstyle():
|
||
|
col = mcollections.PathCollection([], joinstyle='round')
|
||
|
assert col.get_joinstyle() == 'round'
|
||
|
col.set_joinstyle('miter')
|
||
|
assert col.get_joinstyle() == 'miter'
|
||
|
|
||
|
|
||
|
@image_comparison(['cap_and_joinstyle.png'])
|
||
|
def test_cap_and_joinstyle_image():
|
||
|
fig, ax = plt.subplots()
|
||
|
ax.set_xlim([-0.5, 1.5])
|
||
|
ax.set_ylim([-0.5, 2.5])
|
||
|
|
||
|
x = np.array([0.0, 1.0, 0.5])
|
||
|
ys = np.array([[0.0], [0.5], [1.0]]) + np.array([[0.0, 0.0, 1.0]])
|
||
|
|
||
|
segs = np.zeros((3, 3, 2))
|
||
|
segs[:, :, 0] = x
|
||
|
segs[:, :, 1] = ys
|
||
|
line_segments = LineCollection(segs, linewidth=[10, 15, 20])
|
||
|
line_segments.set_capstyle("round")
|
||
|
line_segments.set_joinstyle("miter")
|
||
|
|
||
|
ax.add_collection(line_segments)
|
||
|
ax.set_title('Line collection with customized caps and joinstyle')
|
||
|
|
||
|
|
||
|
@image_comparison(['scatter_post_alpha.png'],
|
||
|
remove_text=True, style='default')
|
||
|
def test_scatter_post_alpha():
|
||
|
fig, ax = plt.subplots()
|
||
|
sc = ax.scatter(range(5), range(5), c=range(5))
|
||
|
sc.set_alpha(.1)
|
||
|
|
||
|
|
||
|
def test_scatter_alpha_array():
|
||
|
x = np.arange(5)
|
||
|
alpha = x / 5
|
||
|
# With colormapping.
|
||
|
fig, (ax0, ax1) = plt.subplots(2)
|
||
|
sc0 = ax0.scatter(x, x, c=x, alpha=alpha)
|
||
|
sc1 = ax1.scatter(x, x, c=x)
|
||
|
sc1.set_alpha(alpha)
|
||
|
plt.draw()
|
||
|
assert_array_equal(sc0.get_facecolors()[:, -1], alpha)
|
||
|
assert_array_equal(sc1.get_facecolors()[:, -1], alpha)
|
||
|
# Without colormapping.
|
||
|
fig, (ax0, ax1) = plt.subplots(2)
|
||
|
sc0 = ax0.scatter(x, x, color=['r', 'g', 'b', 'c', 'm'], alpha=alpha)
|
||
|
sc1 = ax1.scatter(x, x, color='r', alpha=alpha)
|
||
|
plt.draw()
|
||
|
assert_array_equal(sc0.get_facecolors()[:, -1], alpha)
|
||
|
assert_array_equal(sc1.get_facecolors()[:, -1], alpha)
|
||
|
# Without colormapping, and set alpha afterward.
|
||
|
fig, (ax0, ax1) = plt.subplots(2)
|
||
|
sc0 = ax0.scatter(x, x, color=['r', 'g', 'b', 'c', 'm'])
|
||
|
sc0.set_alpha(alpha)
|
||
|
sc1 = ax1.scatter(x, x, color='r')
|
||
|
sc1.set_alpha(alpha)
|
||
|
plt.draw()
|
||
|
assert_array_equal(sc0.get_facecolors()[:, -1], alpha)
|
||
|
assert_array_equal(sc1.get_facecolors()[:, -1], alpha)
|
||
|
|
||
|
|
||
|
def test_pathcollection_legend_elements():
|
||
|
np.random.seed(19680801)
|
||
|
x, y = np.random.rand(2, 10)
|
||
|
y = np.random.rand(10)
|
||
|
c = np.random.randint(0, 5, size=10)
|
||
|
s = np.random.randint(10, 300, size=10)
|
||
|
|
||
|
fig, ax = plt.subplots()
|
||
|
sc = ax.scatter(x, y, c=c, s=s, cmap="jet", marker="o", linewidths=0)
|
||
|
|
||
|
h, l = sc.legend_elements(fmt="{x:g}")
|
||
|
assert len(h) == 5
|
||
|
assert_array_equal(np.array(l).astype(float), np.arange(5))
|
||
|
colors = np.array([line.get_color() for line in h])
|
||
|
colors2 = sc.cmap(np.arange(5)/4)
|
||
|
assert_array_equal(colors, colors2)
|
||
|
l1 = ax.legend(h, l, loc=1)
|
||
|
|
||
|
h2, lab2 = sc.legend_elements(num=9)
|
||
|
assert len(h2) == 9
|
||
|
l2 = ax.legend(h2, lab2, loc=2)
|
||
|
|
||
|
h, l = sc.legend_elements(prop="sizes", alpha=0.5, color="red")
|
||
|
alpha = np.array([line.get_alpha() for line in h])
|
||
|
assert_array_equal(alpha, 0.5)
|
||
|
color = np.array([line.get_markerfacecolor() for line in h])
|
||
|
assert_array_equal(color, "red")
|
||
|
l3 = ax.legend(h, l, loc=4)
|
||
|
|
||
|
h, l = sc.legend_elements(prop="sizes", num=4, fmt="{x:.2f}",
|
||
|
func=lambda x: 2*x)
|
||
|
actsizes = [line.get_markersize() for line in h]
|
||
|
labeledsizes = np.sqrt(np.array(l).astype(float)/2)
|
||
|
assert_array_almost_equal(actsizes, labeledsizes)
|
||
|
l4 = ax.legend(h, l, loc=3)
|
||
|
|
||
|
loc = mpl.ticker.MaxNLocator(nbins=9, min_n_ticks=9-1,
|
||
|
steps=[1, 2, 2.5, 3, 5, 6, 8, 10])
|
||
|
h5, lab5 = sc.legend_elements(num=loc)
|
||
|
assert len(h2) == len(h5)
|
||
|
|
||
|
levels = [-1, 0, 55.4, 260]
|
||
|
h6, lab6 = sc.legend_elements(num=levels, prop="sizes", fmt="{x:g}")
|
||
|
assert_array_equal(np.array(lab6).astype(float), levels[2:])
|
||
|
|
||
|
for l in [l1, l2, l3, l4]:
|
||
|
ax.add_artist(l)
|
||
|
|
||
|
fig.canvas.draw()
|
||
|
|
||
|
|
||
|
def test_EventCollection_nosort():
|
||
|
# Check that EventCollection doesn't modify input in place
|
||
|
arr = np.array([3, 2, 1, 10])
|
||
|
coll = EventCollection(arr)
|
||
|
np.testing.assert_array_equal(arr, np.array([3, 2, 1, 10]))
|
||
|
|
||
|
|
||
|
def test_collection_set_verts_array():
|
||
|
verts = np.arange(80, dtype=np.double).reshape(10, 4, 2)
|
||
|
col_arr = PolyCollection(verts)
|
||
|
col_list = PolyCollection(list(verts))
|
||
|
assert len(col_arr._paths) == len(col_list._paths)
|
||
|
for ap, lp in zip(col_arr._paths, col_list._paths):
|
||
|
assert np.array_equal(ap._vertices, lp._vertices)
|
||
|
assert np.array_equal(ap._codes, lp._codes)
|
||
|
|
||
|
verts_tuple = np.empty(10, dtype=object)
|
||
|
verts_tuple[:] = [tuple(tuple(y) for y in x) for x in verts]
|
||
|
col_arr_tuple = PolyCollection(verts_tuple)
|
||
|
assert len(col_arr._paths) == len(col_arr_tuple._paths)
|
||
|
for ap, atp in zip(col_arr._paths, col_arr_tuple._paths):
|
||
|
assert np.array_equal(ap._vertices, atp._vertices)
|
||
|
assert np.array_equal(ap._codes, atp._codes)
|
||
|
|
||
|
|
||
|
def test_blended_collection_autolim():
|
||
|
a = [1, 2, 4]
|
||
|
height = .2
|
||
|
|
||
|
xy_pairs = np.column_stack([np.repeat(a, 2), np.tile([0, height], len(a))])
|
||
|
line_segs = xy_pairs.reshape([len(a), 2, 2])
|
||
|
|
||
|
f, ax = plt.subplots()
|
||
|
trans = mtransforms.blended_transform_factory(ax.transData, ax.transAxes)
|
||
|
ax.add_collection(LineCollection(line_segs, transform=trans))
|
||
|
ax.autoscale_view(scalex=True, scaley=False)
|
||
|
np.testing.assert_allclose(ax.get_xlim(), [1., 4.])
|
||
|
|
||
|
|
||
|
def test_singleton_autolim():
|
||
|
fig, ax = plt.subplots()
|
||
|
ax.scatter(0, 0)
|
||
|
np.testing.assert_allclose(ax.get_ylim(), [-0.06, 0.06])
|
||
|
np.testing.assert_allclose(ax.get_xlim(), [-0.06, 0.06])
|
||
|
|
||
|
|
||
|
def test_quadmesh_set_array():
|
||
|
x = np.arange(4)
|
||
|
y = np.arange(4)
|
||
|
z = np.arange(9).reshape((3, 3))
|
||
|
fig, ax = plt.subplots()
|
||
|
coll = ax.pcolormesh(x, y, np.ones(z.shape))
|
||
|
# Test that the collection is able to update with a 2d array
|
||
|
coll.set_array(z)
|
||
|
fig.canvas.draw()
|
||
|
assert np.array_equal(coll.get_array(), z)
|
||
|
|
||
|
# Check that pre-flattened arrays work too
|
||
|
coll.set_array(np.ones(9))
|
||
|
fig.canvas.draw()
|
||
|
assert np.array_equal(coll.get_array(), np.ones(9))
|
||
|
|
||
|
|
||
|
def test_quadmesh_alpha_array():
|
||
|
x = np.arange(4)
|
||
|
y = np.arange(4)
|
||
|
z = np.arange(9).reshape((3, 3))
|
||
|
alpha = z / z.max()
|
||
|
alpha_flat = alpha.ravel()
|
||
|
# Provide 2-D alpha:
|
||
|
fig, (ax0, ax1) = plt.subplots(2)
|
||
|
coll1 = ax0.pcolormesh(x, y, z, alpha=alpha)
|
||
|
coll2 = ax1.pcolormesh(x, y, z)
|
||
|
coll2.set_alpha(alpha)
|
||
|
plt.draw()
|
||
|
assert_array_equal(coll1.get_facecolors()[:, -1], alpha_flat)
|
||
|
assert_array_equal(coll2.get_facecolors()[:, -1], alpha_flat)
|
||
|
# Or provide 1-D alpha:
|
||
|
fig, (ax0, ax1) = plt.subplots(2)
|
||
|
coll1 = ax0.pcolormesh(x, y, z, alpha=alpha_flat)
|
||
|
coll2 = ax1.pcolormesh(x, y, z)
|
||
|
coll2.set_alpha(alpha_flat)
|
||
|
plt.draw()
|
||
|
assert_array_equal(coll1.get_facecolors()[:, -1], alpha_flat)
|
||
|
assert_array_equal(coll2.get_facecolors()[:, -1], alpha_flat)
|
||
|
|
||
|
|
||
|
def test_alpha_validation():
|
||
|
# Most of the relevant testing is in test_artist and test_colors.
|
||
|
fig, ax = plt.subplots()
|
||
|
pc = ax.pcolormesh(np.arange(12).reshape((3, 4)))
|
||
|
with pytest.raises(ValueError, match="^Data array shape"):
|
||
|
pc.set_alpha([0.5, 0.6])
|
||
|
pc.update_scalarmappable()
|
||
|
|
||
|
|
||
|
def test_legend_inverse_size_label_relationship():
|
||
|
"""
|
||
|
Ensure legend markers scale appropriately when label and size are
|
||
|
inversely related.
|
||
|
Here label = 5 / size
|
||
|
"""
|
||
|
|
||
|
np.random.seed(19680801)
|
||
|
X = np.random.random(50)
|
||
|
Y = np.random.random(50)
|
||
|
C = 1 - np.random.random(50)
|
||
|
S = 5 / C
|
||
|
|
||
|
legend_sizes = [0.2, 0.4, 0.6, 0.8]
|
||
|
fig, ax = plt.subplots()
|
||
|
sc = ax.scatter(X, Y, s=S)
|
||
|
handles, labels = sc.legend_elements(
|
||
|
prop='sizes', num=legend_sizes, func=lambda s: 5 / s
|
||
|
)
|
||
|
|
||
|
# Convert markersize scale to 's' scale
|
||
|
handle_sizes = [x.get_markersize() for x in handles]
|
||
|
handle_sizes = [5 / x**2 for x in handle_sizes]
|
||
|
|
||
|
assert_array_almost_equal(handle_sizes, legend_sizes, decimal=1)
|
||
|
|
||
|
|
||
|
@pytest.mark.style('default')
|
||
|
@pytest.mark.parametrize('pcfunc', [plt.pcolor, plt.pcolormesh])
|
||
|
def test_color_logic(pcfunc):
|
||
|
z = np.arange(12).reshape(3, 4)
|
||
|
# Explicitly set an edgecolor.
|
||
|
pc = pcfunc(z, edgecolors='red', facecolors='none')
|
||
|
pc.update_scalarmappable() # This is called in draw().
|
||
|
# Define 2 reference "colors" here for multiple use.
|
||
|
face_default = mcolors.to_rgba_array(pc._get_default_facecolor())
|
||
|
mapped = pc.get_cmap()(pc.norm((z.ravel())))
|
||
|
# Github issue #1302:
|
||
|
assert mcolors.same_color(pc.get_edgecolor(), 'red')
|
||
|
# Check setting attributes after initialization:
|
||
|
pc = pcfunc(z)
|
||
|
pc.set_facecolor('none')
|
||
|
pc.set_edgecolor('red')
|
||
|
pc.update_scalarmappable()
|
||
|
assert mcolors.same_color(pc.get_facecolor(), 'none')
|
||
|
assert mcolors.same_color(pc.get_edgecolor(), [[1, 0, 0, 1]])
|
||
|
pc.set_alpha(0.5)
|
||
|
pc.update_scalarmappable()
|
||
|
assert mcolors.same_color(pc.get_edgecolor(), [[1, 0, 0, 0.5]])
|
||
|
pc.set_alpha(None) # restore default alpha
|
||
|
pc.update_scalarmappable()
|
||
|
assert mcolors.same_color(pc.get_edgecolor(), [[1, 0, 0, 1]])
|
||
|
# Reset edgecolor to default.
|
||
|
pc.set_edgecolor(None)
|
||
|
pc.update_scalarmappable()
|
||
|
assert mcolors.same_color(pc.get_edgecolor(), mapped)
|
||
|
pc.set_facecolor(None) # restore default for facecolor
|
||
|
pc.update_scalarmappable()
|
||
|
assert mcolors.same_color(pc.get_facecolor(), mapped)
|
||
|
assert mcolors.same_color(pc.get_edgecolor(), 'none')
|
||
|
# Turn off colormapping entirely:
|
||
|
pc.set_array(None)
|
||
|
pc.update_scalarmappable()
|
||
|
assert mcolors.same_color(pc.get_edgecolor(), 'none')
|
||
|
assert mcolors.same_color(pc.get_facecolor(), face_default) # not mapped
|
||
|
# Turn it back on by restoring the array (must be 1D!):
|
||
|
pc.set_array(z.ravel())
|
||
|
pc.update_scalarmappable()
|
||
|
assert mcolors.same_color(pc.get_facecolor(), mapped)
|
||
|
assert mcolors.same_color(pc.get_edgecolor(), 'none')
|
||
|
# Give color via tuple rather than string.
|
||
|
pc = pcfunc(z, edgecolors=(1, 0, 0), facecolors=(0, 1, 0))
|
||
|
pc.update_scalarmappable()
|
||
|
assert mcolors.same_color(pc.get_facecolor(), mapped)
|
||
|
assert mcolors.same_color(pc.get_edgecolor(), [[1, 0, 0, 1]])
|
||
|
# Provide an RGB array; mapping overrides it.
|
||
|
pc = pcfunc(z, edgecolors=(1, 0, 0), facecolors=np.ones((12, 3)))
|
||
|
pc.update_scalarmappable()
|
||
|
assert mcolors.same_color(pc.get_facecolor(), mapped)
|
||
|
assert mcolors.same_color(pc.get_edgecolor(), [[1, 0, 0, 1]])
|
||
|
# Turn off the mapping.
|
||
|
pc.set_array(None)
|
||
|
pc.update_scalarmappable()
|
||
|
assert mcolors.same_color(pc.get_facecolor(), np.ones((12, 3)))
|
||
|
assert mcolors.same_color(pc.get_edgecolor(), [[1, 0, 0, 1]])
|
||
|
# And an RGBA array.
|
||
|
pc = pcfunc(z, edgecolors=(1, 0, 0), facecolors=np.ones((12, 4)))
|
||
|
pc.update_scalarmappable()
|
||
|
assert mcolors.same_color(pc.get_facecolor(), mapped)
|
||
|
assert mcolors.same_color(pc.get_edgecolor(), [[1, 0, 0, 1]])
|
||
|
# Turn off the mapping.
|
||
|
pc.set_array(None)
|
||
|
pc.update_scalarmappable()
|
||
|
assert mcolors.same_color(pc.get_facecolor(), np.ones((12, 4)))
|
||
|
assert mcolors.same_color(pc.get_edgecolor(), [[1, 0, 0, 1]])
|
||
|
|
||
|
|
||
|
def test_LineCollection_args():
|
||
|
with pytest.warns(MatplotlibDeprecationWarning):
|
||
|
lc = LineCollection(None, 2.2, 'r', zorder=3, facecolors=[0, 1, 0, 1])
|
||
|
assert lc.get_linewidth()[0] == 2.2
|
||
|
assert mcolors.same_color(lc.get_edgecolor(), 'r')
|
||
|
assert lc.get_zorder() == 3
|
||
|
assert mcolors.same_color(lc.get_facecolor(), [[0, 1, 0, 1]])
|
||
|
# To avoid breaking mplot3d, LineCollection internally sets the facecolor
|
||
|
# kwarg if it has not been specified. Hence we need the following test
|
||
|
# for LineCollection._set_default().
|
||
|
lc = LineCollection(None, facecolor=None)
|
||
|
assert mcolors.same_color(lc.get_facecolor(), 'none')
|
||
|
|
||
|
|
||
|
def test_array_wrong_dimensions():
|
||
|
z = np.arange(12).reshape(3, 4)
|
||
|
pc = plt.pcolor(z)
|
||
|
with pytest.raises(ValueError, match="^Collections can only map"):
|
||
|
pc.set_array(z)
|
||
|
pc.update_scalarmappable()
|
||
|
pc = plt.pcolormesh(z)
|
||
|
pc.set_array(z) # 2D is OK for Quadmesh
|
||
|
pc.update_scalarmappable()
|