134 lines
4.6 KiB
Python
134 lines
4.6 KiB
Python
|
# mlxtend Machine Learning Library Extensions
|
||
|
# Author: Steve Harenberg <harenbergsd@gmail.com>
|
||
|
#
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import math
|
||
|
import itertools
|
||
|
from ..frequent_patterns import fpcommon as fpc
|
||
|
|
||
|
|
||
|
def fpgrowth(df, min_support=0.5, use_colnames=False, max_len=None, verbose=0):
|
||
|
"""Get frequent itemsets from a one-hot DataFrame
|
||
|
|
||
|
Parameters
|
||
|
-----------
|
||
|
df : pandas DataFrame
|
||
|
pandas DataFrame the encoded format. Also supports
|
||
|
DataFrames with sparse data; for more info, please
|
||
|
see (https://pandas.pydata.org/pandas-docs/stable/
|
||
|
user_guide/sparse.html#sparse-data-structures)
|
||
|
|
||
|
Please note that the old pandas SparseDataFrame format
|
||
|
is no longer supported in mlxtend >= 0.17.2.
|
||
|
|
||
|
The allowed values are either 0/1 or True/False.
|
||
|
For example,
|
||
|
|
||
|
```
|
||
|
Apple Bananas Beer Chicken Milk Rice
|
||
|
0 True False True True False True
|
||
|
1 True False True False False True
|
||
|
2 True False True False False False
|
||
|
3 True True False False False False
|
||
|
4 False False True True True True
|
||
|
5 False False True False True True
|
||
|
6 False False True False True False
|
||
|
7 True True False False False False
|
||
|
```
|
||
|
|
||
|
min_support : float (default: 0.5)
|
||
|
A float between 0 and 1 for minimum support of the itemsets returned.
|
||
|
The support is computed as the fraction
|
||
|
transactions_where_item(s)_occur / total_transactions.
|
||
|
|
||
|
use_colnames : bool (default: False)
|
||
|
If true, uses the DataFrames' column names in the returned DataFrame
|
||
|
instead of column indices.
|
||
|
|
||
|
max_len : int (default: None)
|
||
|
Maximum length of the itemsets generated. If `None` (default) all
|
||
|
possible itemsets lengths are evaluated.
|
||
|
|
||
|
verbose : int (default: 0)
|
||
|
Shows the stages of conditional tree generation.
|
||
|
|
||
|
Returns
|
||
|
-----------
|
||
|
pandas DataFrame with columns ['support', 'itemsets'] of all itemsets
|
||
|
that are >= `min_support` and < than `max_len`
|
||
|
(if `max_len` is not None).
|
||
|
Each itemset in the 'itemsets' column is of type `frozenset`,
|
||
|
which is a Python built-in type that behaves similarly to
|
||
|
sets except that it is immutable
|
||
|
(For more info, see
|
||
|
https://docs.python.org/3.6/library/stdtypes.html#frozenset).
|
||
|
|
||
|
Examples
|
||
|
----------
|
||
|
For usage examples, please see
|
||
|
http://rasbt.github.io/mlxtend/user_guide/frequent_patterns/fpgrowth/
|
||
|
|
||
|
"""
|
||
|
fpc.valid_input_check(df)
|
||
|
|
||
|
if min_support <= 0.:
|
||
|
raise ValueError('`min_support` must be a positive '
|
||
|
'number within the interval `(0, 1]`. '
|
||
|
'Got %s.' % min_support)
|
||
|
|
||
|
colname_map = None
|
||
|
if use_colnames:
|
||
|
colname_map = {idx: item for idx, item in enumerate(df.columns)}
|
||
|
|
||
|
tree, _ = fpc.setup_fptree(df, min_support)
|
||
|
minsup = math.ceil(min_support * len(df.index)) # min support as count
|
||
|
generator = fpg_step(tree, minsup, colname_map, max_len, verbose)
|
||
|
|
||
|
return fpc.generate_itemsets(generator, len(df.index), colname_map)
|
||
|
|
||
|
|
||
|
def fpg_step(tree, minsup, colnames, max_len, verbose):
|
||
|
"""
|
||
|
Performs a recursive step of the fpgrowth algorithm.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
tree : FPTree
|
||
|
minsup : int
|
||
|
|
||
|
Yields
|
||
|
------
|
||
|
lists of strings
|
||
|
Set of items that has occurred in minsup itemsets.
|
||
|
"""
|
||
|
count = 0
|
||
|
items = tree.nodes.keys()
|
||
|
if tree.is_path():
|
||
|
# If the tree is a path, we can combinatorally generate all
|
||
|
# remaining itemsets without generating additional conditional trees
|
||
|
size_remain = len(items) + 1
|
||
|
if max_len:
|
||
|
size_remain = max_len - len(tree.cond_items) + 1
|
||
|
for i in range(1, size_remain):
|
||
|
for itemset in itertools.combinations(items, i):
|
||
|
count += 1
|
||
|
support = min([tree.nodes[i][0].count for i in itemset])
|
||
|
yield support, tree.cond_items + list(itemset)
|
||
|
elif not max_len or max_len > len(tree.cond_items):
|
||
|
for item in items:
|
||
|
count += 1
|
||
|
support = sum([node.count for node in tree.nodes[item]])
|
||
|
yield support, tree.cond_items + [item]
|
||
|
|
||
|
if verbose:
|
||
|
tree.print_status(count, colnames)
|
||
|
|
||
|
# Generate conditional trees to generate frequent itemsets one item larger
|
||
|
if not tree.is_path() and (not max_len or max_len > len(tree.cond_items)):
|
||
|
for item in items:
|
||
|
cond_tree = tree.conditional_tree(item, minsup)
|
||
|
for sup, iset in fpg_step(cond_tree, minsup,
|
||
|
colnames, max_len, verbose):
|
||
|
yield sup, iset
|