200 lines
6.1 KiB
Python
200 lines
6.1 KiB
Python
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
import pandas._testing as tm
|
||
|
from pandas.api.types import is_integer
|
||
|
from pandas.core.arrays import IntegerArray, integer_array
|
||
|
from pandas.core.arrays.integer import Int8Dtype, Int32Dtype, Int64Dtype
|
||
|
|
||
|
|
||
|
def test_uses_pandas_na():
|
||
|
a = pd.array([1, None], dtype=Int64Dtype())
|
||
|
assert a[1] is pd.NA
|
||
|
|
||
|
|
||
|
def test_from_dtype_from_float(data):
|
||
|
# construct from our dtype & string dtype
|
||
|
dtype = data.dtype
|
||
|
|
||
|
# from float
|
||
|
expected = pd.Series(data)
|
||
|
result = pd.Series(data.to_numpy(na_value=np.nan, dtype="float"), dtype=str(dtype))
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# from int / list
|
||
|
expected = pd.Series(data)
|
||
|
result = pd.Series(np.array(data).tolist(), dtype=str(dtype))
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# from int / array
|
||
|
expected = pd.Series(data).dropna().reset_index(drop=True)
|
||
|
dropped = np.array(data.dropna()).astype(np.dtype(dtype.type))
|
||
|
result = pd.Series(dropped, dtype=str(dtype))
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_conversions(data_missing):
|
||
|
|
||
|
# astype to object series
|
||
|
df = pd.DataFrame({"A": data_missing})
|
||
|
result = df["A"].astype("object")
|
||
|
expected = pd.Series(np.array([np.nan, 1], dtype=object), name="A")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# convert to object ndarray
|
||
|
# we assert that we are exactly equal
|
||
|
# including type conversions of scalars
|
||
|
result = df["A"].astype("object").values
|
||
|
expected = np.array([pd.NA, 1], dtype=object)
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
for r, e in zip(result, expected):
|
||
|
if pd.isnull(r):
|
||
|
assert pd.isnull(e)
|
||
|
elif is_integer(r):
|
||
|
assert r == e
|
||
|
assert is_integer(e)
|
||
|
else:
|
||
|
assert r == e
|
||
|
assert type(r) == type(e)
|
||
|
|
||
|
|
||
|
def test_integer_array_constructor():
|
||
|
values = np.array([1, 2, 3, 4], dtype="int64")
|
||
|
mask = np.array([False, False, False, True], dtype="bool")
|
||
|
|
||
|
result = IntegerArray(values, mask)
|
||
|
expected = integer_array([1, 2, 3, np.nan], dtype="int64")
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
msg = r".* should be .* numpy array. Use the 'pd.array' function instead"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
IntegerArray(values.tolist(), mask)
|
||
|
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
IntegerArray(values, mask.tolist())
|
||
|
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
IntegerArray(values.astype(float), mask)
|
||
|
msg = r"__init__\(\) missing 1 required positional argument: 'mask'"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
IntegerArray(values)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"a, b",
|
||
|
[
|
||
|
([1, None], [1, np.nan]),
|
||
|
([None], [np.nan]),
|
||
|
([None, np.nan], [np.nan, np.nan]),
|
||
|
([np.nan, np.nan], [np.nan, np.nan]),
|
||
|
],
|
||
|
)
|
||
|
def test_integer_array_constructor_none_is_nan(a, b):
|
||
|
result = integer_array(a)
|
||
|
expected = integer_array(b)
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_integer_array_constructor_copy():
|
||
|
values = np.array([1, 2, 3, 4], dtype="int64")
|
||
|
mask = np.array([False, False, False, True], dtype="bool")
|
||
|
|
||
|
result = IntegerArray(values, mask)
|
||
|
assert result._data is values
|
||
|
assert result._mask is mask
|
||
|
|
||
|
result = IntegerArray(values, mask, copy=True)
|
||
|
assert result._data is not values
|
||
|
assert result._mask is not mask
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"values",
|
||
|
[
|
||
|
["foo", "bar"],
|
||
|
["1", "2"],
|
||
|
"foo",
|
||
|
1,
|
||
|
1.0,
|
||
|
pd.date_range("20130101", periods=2),
|
||
|
np.array(["foo"]),
|
||
|
[[1, 2], [3, 4]],
|
||
|
[np.nan, {"a": 1}],
|
||
|
],
|
||
|
)
|
||
|
def test_to_integer_array_error(values):
|
||
|
# error in converting existing arrays to IntegerArrays
|
||
|
msg = (
|
||
|
r"(:?.* cannot be converted to an IntegerDtype)"
|
||
|
r"|(:?values must be a 1D list-like)"
|
||
|
)
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
integer_array(values)
|
||
|
|
||
|
|
||
|
def test_to_integer_array_inferred_dtype():
|
||
|
# if values has dtype -> respect it
|
||
|
result = integer_array(np.array([1, 2], dtype="int8"))
|
||
|
assert result.dtype == Int8Dtype()
|
||
|
result = integer_array(np.array([1, 2], dtype="int32"))
|
||
|
assert result.dtype == Int32Dtype()
|
||
|
|
||
|
# if values have no dtype -> always int64
|
||
|
result = integer_array([1, 2])
|
||
|
assert result.dtype == Int64Dtype()
|
||
|
|
||
|
|
||
|
def test_to_integer_array_dtype_keyword():
|
||
|
result = integer_array([1, 2], dtype="int8")
|
||
|
assert result.dtype == Int8Dtype()
|
||
|
|
||
|
# if values has dtype -> override it
|
||
|
result = integer_array(np.array([1, 2], dtype="int8"), dtype="int32")
|
||
|
assert result.dtype == Int32Dtype()
|
||
|
|
||
|
|
||
|
def test_to_integer_array_float():
|
||
|
result = integer_array([1.0, 2.0])
|
||
|
expected = integer_array([1, 2])
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
with pytest.raises(TypeError, match="cannot safely cast non-equivalent"):
|
||
|
integer_array([1.5, 2.0])
|
||
|
|
||
|
# for float dtypes, the itemsize is not preserved
|
||
|
result = integer_array(np.array([1.0, 2.0], dtype="float32"))
|
||
|
assert result.dtype == Int64Dtype()
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"bool_values, int_values, target_dtype, expected_dtype",
|
||
|
[
|
||
|
([False, True], [0, 1], Int64Dtype(), Int64Dtype()),
|
||
|
([False, True], [0, 1], "Int64", Int64Dtype()),
|
||
|
([False, True, np.nan], [0, 1, np.nan], Int64Dtype(), Int64Dtype()),
|
||
|
],
|
||
|
)
|
||
|
def test_to_integer_array_bool(bool_values, int_values, target_dtype, expected_dtype):
|
||
|
result = integer_array(bool_values, dtype=target_dtype)
|
||
|
assert result.dtype == expected_dtype
|
||
|
expected = integer_array(int_values, dtype=target_dtype)
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"values, to_dtype, result_dtype",
|
||
|
[
|
||
|
(np.array([1], dtype="int64"), None, Int64Dtype),
|
||
|
(np.array([1, np.nan]), None, Int64Dtype),
|
||
|
(np.array([1, np.nan]), "int8", Int8Dtype),
|
||
|
],
|
||
|
)
|
||
|
def test_to_integer_array(values, to_dtype, result_dtype):
|
||
|
# convert existing arrays to IntegerArrays
|
||
|
result = integer_array(values, dtype=to_dtype)
|
||
|
assert result.dtype == result_dtype()
|
||
|
expected = integer_array(values, dtype=result_dtype())
|
||
|
tm.assert_extension_array_equal(result, expected)
|