projektAI/venv/Lib/site-packages/pandas/tests/indexes/test_index_new.py

135 lines
4.4 KiB
Python
Raw Normal View History

2021-06-06 22:13:05 +02:00
"""
Tests for the Index constructor conducting inference.
"""
import numpy as np
import pytest
from pandas.core.dtypes.common import is_unsigned_integer_dtype
from pandas import (
NA,
CategoricalIndex,
DatetimeIndex,
Index,
Int64Index,
MultiIndex,
NaT,
PeriodIndex,
Series,
TimedeltaIndex,
Timestamp,
UInt64Index,
period_range,
)
import pandas._testing as tm
class TestIndexConstructorInference:
@pytest.mark.parametrize("na_value", [None, np.nan])
@pytest.mark.parametrize("vtype", [list, tuple, iter])
def test_construction_list_tuples_nan(self, na_value, vtype):
# GH#18505 : valid tuples containing NaN
values = [(1, "two"), (3.0, na_value)]
result = Index(vtype(values))
expected = MultiIndex.from_tuples(values)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize(
"dtype",
[int, "int64", "int32", "int16", "int8", "uint64", "uint32", "uint16", "uint8"],
)
def test_constructor_int_dtype_float(self, dtype):
# GH#18400
if is_unsigned_integer_dtype(dtype):
index_type = UInt64Index
else:
index_type = Int64Index
expected = index_type([0, 1, 2, 3])
result = Index([0.0, 1.0, 2.0, 3.0], dtype=dtype)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("cast_index", [True, False])
@pytest.mark.parametrize(
"vals", [[True, False, True], np.array([True, False, True], dtype=bool)]
)
def test_constructor_dtypes_to_object(self, cast_index, vals):
if cast_index:
index = Index(vals, dtype=bool)
else:
index = Index(vals)
assert type(index) is Index
assert index.dtype == object
def test_constructor_categorical_to_object(self):
# GH#32167 Categorical data and dtype=object should return object-dtype
ci = CategoricalIndex(range(5))
result = Index(ci, dtype=object)
assert not isinstance(result, CategoricalIndex)
def test_constructor_infer_periodindex(self):
xp = period_range("2012-1-1", freq="M", periods=3)
rs = Index(xp)
tm.assert_index_equal(rs, xp)
assert isinstance(rs, PeriodIndex)
@pytest.mark.parametrize("pos", [0, 1])
@pytest.mark.parametrize(
"klass,dtype,ctor",
[
(DatetimeIndex, "datetime64[ns]", np.datetime64("nat")),
(TimedeltaIndex, "timedelta64[ns]", np.timedelta64("nat")),
],
)
def test_constructor_infer_nat_dt_like(
self, pos, klass, dtype, ctor, nulls_fixture, request
):
expected = klass([NaT, NaT])
assert expected.dtype == dtype
data = [ctor]
data.insert(pos, nulls_fixture)
warn = None
if nulls_fixture is NA:
expected = Index([NA, NaT])
mark = pytest.mark.xfail(reason="Broken with np.NaT ctor; see GH 31884")
request.node.add_marker(mark)
# GH#35942 numpy will emit a DeprecationWarning within the
# assert_index_equal calls. Since we can't do anything
# about it until GH#31884 is fixed, we suppress that warning.
warn = DeprecationWarning
result = Index(data)
with tm.assert_produces_warning(warn):
tm.assert_index_equal(result, expected)
result = Index(np.array(data, dtype=object))
with tm.assert_produces_warning(warn):
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("swap_objs", [True, False])
def test_constructor_mixed_nat_objs_infers_object(self, swap_objs):
# mixed np.datetime64/timedelta64 nat results in object
data = [np.datetime64("nat"), np.timedelta64("nat")]
if swap_objs:
data = data[::-1]
expected = Index(data, dtype=object)
tm.assert_index_equal(Index(data), expected)
tm.assert_index_equal(Index(np.array(data, dtype=object)), expected)
class TestIndexConstructorUnwrapping:
# Test passing different arraylike values to pd.Index
@pytest.mark.parametrize("klass", [Index, DatetimeIndex])
def test_constructor_from_series_dt64(self, klass):
stamps = [Timestamp("20110101"), Timestamp("20120101"), Timestamp("20130101")]
expected = DatetimeIndex(stamps)
ser = Series(stamps)
result = klass(ser)
tm.assert_index_equal(result, expected)