projektAI/venv/Lib/site-packages/pandas/tests/indexes/timedeltas/test_indexing.py

274 lines
9.8 KiB
Python
Raw Normal View History

2021-06-06 22:13:05 +02:00
from datetime import datetime, timedelta
import re
import numpy as np
import pytest
import pandas as pd
from pandas import Index, Timedelta, TimedeltaIndex, notna, timedelta_range
import pandas._testing as tm
class TestGetItem:
def test_ellipsis(self):
# GH#21282
idx = timedelta_range("1 day", "31 day", freq="D", name="idx")
result = idx[...]
assert result.equals(idx)
assert result is not idx
def test_getitem_slice_keeps_name(self):
# GH#4226
tdi = timedelta_range("1d", "5d", freq="H", name="timebucket")
assert tdi[1:].name == tdi.name
def test_getitem(self):
idx1 = timedelta_range("1 day", "31 day", freq="D", name="idx")
for idx in [idx1]:
result = idx[0]
assert result == Timedelta("1 day")
result = idx[0:5]
expected = timedelta_range("1 day", "5 day", freq="D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx[0:10:2]
expected = timedelta_range("1 day", "9 day", freq="2D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx[-20:-5:3]
expected = timedelta_range("12 day", "24 day", freq="3D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx[4::-1]
expected = TimedeltaIndex(
["5 day", "4 day", "3 day", "2 day", "1 day"], freq="-1D", name="idx"
)
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
@pytest.mark.parametrize(
"key",
[
pd.Timestamp("1970-01-01"),
pd.Timestamp("1970-01-02"),
datetime(1970, 1, 1),
pd.Timestamp("1970-01-03").to_datetime64(),
# non-matching NA values
np.datetime64("NaT"),
],
)
def test_timestamp_invalid_key(self, key):
# GH#20464
tdi = timedelta_range(0, periods=10)
with pytest.raises(KeyError, match=re.escape(repr(key))):
tdi.get_loc(key)
class TestGetLoc:
def test_get_loc(self):
idx = pd.to_timedelta(["0 days", "1 days", "2 days"])
for method in [None, "pad", "backfill", "nearest"]:
assert idx.get_loc(idx[1], method) == 1
assert idx.get_loc(idx[1].to_pytimedelta(), method) == 1
assert idx.get_loc(str(idx[1]), method) == 1
assert idx.get_loc(idx[1], "pad", tolerance=Timedelta(0)) == 1
assert idx.get_loc(idx[1], "pad", tolerance=np.timedelta64(0, "s")) == 1
assert idx.get_loc(idx[1], "pad", tolerance=timedelta(0)) == 1
with pytest.raises(ValueError, match="unit abbreviation w/o a number"):
idx.get_loc(idx[1], method="nearest", tolerance="foo")
with pytest.raises(ValueError, match="tolerance size must match"):
idx.get_loc(
idx[1],
method="nearest",
tolerance=[
Timedelta(0).to_timedelta64(),
Timedelta(0).to_timedelta64(),
],
)
for method, loc in [("pad", 1), ("backfill", 2), ("nearest", 1)]:
assert idx.get_loc("1 day 1 hour", method) == loc
# GH 16909
assert idx.get_loc(idx[1].to_timedelta64()) == 1
# GH 16896
assert idx.get_loc("0 days") == 0
def test_get_loc_nat(self):
tidx = TimedeltaIndex(["1 days 01:00:00", "NaT", "2 days 01:00:00"])
assert tidx.get_loc(pd.NaT) == 1
assert tidx.get_loc(None) == 1
assert tidx.get_loc(float("nan")) == 1
assert tidx.get_loc(np.nan) == 1
class TestGetIndexer:
def test_get_indexer(self):
idx = pd.to_timedelta(["0 days", "1 days", "2 days"])
tm.assert_numpy_array_equal(
idx.get_indexer(idx), np.array([0, 1, 2], dtype=np.intp)
)
target = pd.to_timedelta(["-1 hour", "12 hours", "1 day 1 hour"])
tm.assert_numpy_array_equal(
idx.get_indexer(target, "pad"), np.array([-1, 0, 1], dtype=np.intp)
)
tm.assert_numpy_array_equal(
idx.get_indexer(target, "backfill"), np.array([0, 1, 2], dtype=np.intp)
)
tm.assert_numpy_array_equal(
idx.get_indexer(target, "nearest"), np.array([0, 1, 1], dtype=np.intp)
)
res = idx.get_indexer(target, "nearest", tolerance=Timedelta("1 hour"))
tm.assert_numpy_array_equal(res, np.array([0, -1, 1], dtype=np.intp))
class TestWhere:
def test_where_doesnt_retain_freq(self):
tdi = timedelta_range("1 day", periods=3, freq="D", name="idx")
cond = [True, True, False]
expected = TimedeltaIndex([tdi[0], tdi[1], tdi[0]], freq=None, name="idx")
result = tdi.where(cond, tdi[::-1])
tm.assert_index_equal(result, expected)
def test_where_invalid_dtypes(self):
tdi = timedelta_range("1 day", periods=3, freq="D", name="idx")
i2 = Index([pd.NaT, pd.NaT] + tdi[2:].tolist())
msg = "value should be a 'Timedelta', 'NaT', or array of those"
with pytest.raises(TypeError, match=msg):
tdi.where(notna(i2), i2.asi8)
with pytest.raises(TypeError, match=msg):
tdi.where(notna(i2), i2 + pd.Timestamp.now())
with pytest.raises(TypeError, match=msg):
tdi.where(notna(i2), (i2 + pd.Timestamp.now()).to_period("D"))
with pytest.raises(TypeError, match=msg):
# non-matching scalar
tdi.where(notna(i2), pd.Timestamp.now())
def test_where_mismatched_nat(self):
tdi = timedelta_range("1 day", periods=3, freq="D", name="idx")
cond = np.array([True, False, False])
msg = "value should be a 'Timedelta', 'NaT', or array of those"
with pytest.raises(TypeError, match=msg):
# wrong-dtyped NaT
tdi.where(cond, np.datetime64("NaT", "ns"))
class TestTake:
def test_take(self):
# GH 10295
idx1 = timedelta_range("1 day", "31 day", freq="D", name="idx")
for idx in [idx1]:
result = idx.take([0])
assert result == Timedelta("1 day")
result = idx.take([-1])
assert result == Timedelta("31 day")
result = idx.take([0, 1, 2])
expected = timedelta_range("1 day", "3 day", freq="D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx.take([0, 2, 4])
expected = timedelta_range("1 day", "5 day", freq="2D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx.take([7, 4, 1])
expected = timedelta_range("8 day", "2 day", freq="-3D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx.take([3, 2, 5])
expected = TimedeltaIndex(["4 day", "3 day", "6 day"], name="idx")
tm.assert_index_equal(result, expected)
assert result.freq is None
result = idx.take([-3, 2, 5])
expected = TimedeltaIndex(["29 day", "3 day", "6 day"], name="idx")
tm.assert_index_equal(result, expected)
assert result.freq is None
def test_take_invalid_kwargs(self):
idx = timedelta_range("1 day", "31 day", freq="D", name="idx")
indices = [1, 6, 5, 9, 10, 13, 15, 3]
msg = r"take\(\) got an unexpected keyword argument 'foo'"
with pytest.raises(TypeError, match=msg):
idx.take(indices, foo=2)
msg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=msg):
idx.take(indices, out=indices)
msg = "the 'mode' parameter is not supported"
with pytest.raises(ValueError, match=msg):
idx.take(indices, mode="clip")
# TODO: This method came from test_timedelta; de-dup with version above
def test_take2(self):
tds = ["1day 02:00:00", "1 day 04:00:00", "1 day 10:00:00"]
idx = timedelta_range(start="1d", end="2d", freq="H", name="idx")
expected = TimedeltaIndex(tds, freq=None, name="idx")
taken1 = idx.take([2, 4, 10])
taken2 = idx[[2, 4, 10]]
for taken in [taken1, taken2]:
tm.assert_index_equal(taken, expected)
assert isinstance(taken, TimedeltaIndex)
assert taken.freq is None
assert taken.name == expected.name
def test_take_fill_value(self):
# GH 12631
idx = TimedeltaIndex(["1 days", "2 days", "3 days"], name="xxx")
result = idx.take(np.array([1, 0, -1]))
expected = TimedeltaIndex(["2 days", "1 days", "3 days"], name="xxx")
tm.assert_index_equal(result, expected)
# fill_value
result = idx.take(np.array([1, 0, -1]), fill_value=True)
expected = TimedeltaIndex(["2 days", "1 days", "NaT"], name="xxx")
tm.assert_index_equal(result, expected)
# allow_fill=False
result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
expected = TimedeltaIndex(["2 days", "1 days", "3 days"], name="xxx")
tm.assert_index_equal(result, expected)
msg = (
"When allow_fill=True and fill_value is not None, "
"all indices must be >= -1"
)
with pytest.raises(ValueError, match=msg):
idx.take(np.array([1, 0, -2]), fill_value=True)
with pytest.raises(ValueError, match=msg):
idx.take(np.array([1, 0, -5]), fill_value=True)
msg = "index -5 is out of bounds for (axis 0 with )?size 3"
with pytest.raises(IndexError, match=msg):
idx.take(np.array([1, -5]))