156 lines
4.7 KiB
Python
156 lines
4.7 KiB
Python
|
from datetime import datetime, timezone
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas import CategoricalDtype, DataFrame, Series, Timestamp
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
def test_at_timezone():
|
||
|
# https://github.com/pandas-dev/pandas/issues/33544
|
||
|
result = DataFrame({"foo": [datetime(2000, 1, 1)]})
|
||
|
result.at[0, "foo"] = datetime(2000, 1, 2, tzinfo=timezone.utc)
|
||
|
expected = DataFrame(
|
||
|
{"foo": [datetime(2000, 1, 2, tzinfo=timezone.utc)]}, dtype=object
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
class TestAtSetItem:
|
||
|
def test_at_setitem_mixed_index_assignment(self):
|
||
|
# GH#19860
|
||
|
ser = Series([1, 2, 3, 4, 5], index=["a", "b", "c", 1, 2])
|
||
|
ser.at["a"] = 11
|
||
|
assert ser.iat[0] == 11
|
||
|
ser.at[1] = 22
|
||
|
assert ser.iat[3] == 22
|
||
|
|
||
|
def test_at_setitem_categorical_missing(self):
|
||
|
df = DataFrame(
|
||
|
index=range(3), columns=range(3), dtype=CategoricalDtype(["foo", "bar"])
|
||
|
)
|
||
|
df.at[1, 1] = "foo"
|
||
|
|
||
|
expected = DataFrame(
|
||
|
[
|
||
|
[np.nan, np.nan, np.nan],
|
||
|
[np.nan, "foo", np.nan],
|
||
|
[np.nan, np.nan, np.nan],
|
||
|
],
|
||
|
dtype=CategoricalDtype(["foo", "bar"]),
|
||
|
)
|
||
|
|
||
|
tm.assert_frame_equal(df, expected)
|
||
|
|
||
|
|
||
|
class TestAtSetItemWithExpansion:
|
||
|
def test_at_setitem_expansion_series_dt64tz_value(self, tz_naive_fixture):
|
||
|
# GH#25506
|
||
|
ts = Timestamp("2017-08-05 00:00:00+0100", tz=tz_naive_fixture)
|
||
|
result = Series(ts)
|
||
|
result.at[1] = ts
|
||
|
expected = Series([ts, ts])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
class TestAtWithDuplicates:
|
||
|
def test_at_with_duplicate_axes_requires_scalar_lookup(self):
|
||
|
# GH#33041 check that falling back to loc doesn't allow non-scalar
|
||
|
# args to slip in
|
||
|
|
||
|
arr = np.random.randn(6).reshape(3, 2)
|
||
|
df = DataFrame(arr, columns=["A", "A"])
|
||
|
|
||
|
msg = "Invalid call for scalar access"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
df.at[[1, 2]]
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
df.at[1, ["A"]]
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
df.at[:, "A"]
|
||
|
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
df.at[[1, 2]] = 1
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
df.at[1, ["A"]] = 1
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
df.at[:, "A"] = 1
|
||
|
|
||
|
|
||
|
class TestAtErrors:
|
||
|
# TODO: De-duplicate/parametrize
|
||
|
# test_at_series_raises_key_error, test_at_frame_raises_key_error,
|
||
|
# test_at_series_raises_key_error2, test_at_frame_raises_key_error2
|
||
|
|
||
|
def test_at_series_raises_key_error(self):
|
||
|
# GH#31724 .at should match .loc
|
||
|
|
||
|
ser = Series([1, 2, 3], index=[3, 2, 1])
|
||
|
result = ser.at[1]
|
||
|
assert result == 3
|
||
|
result = ser.loc[1]
|
||
|
assert result == 3
|
||
|
|
||
|
with pytest.raises(KeyError, match="a"):
|
||
|
ser.at["a"]
|
||
|
with pytest.raises(KeyError, match="a"):
|
||
|
# .at should match .loc
|
||
|
ser.loc["a"]
|
||
|
|
||
|
def test_at_frame_raises_key_error(self):
|
||
|
# GH#31724 .at should match .loc
|
||
|
|
||
|
df = DataFrame({0: [1, 2, 3]}, index=[3, 2, 1])
|
||
|
|
||
|
result = df.at[1, 0]
|
||
|
assert result == 3
|
||
|
result = df.loc[1, 0]
|
||
|
assert result == 3
|
||
|
|
||
|
with pytest.raises(KeyError, match="a"):
|
||
|
df.at["a", 0]
|
||
|
with pytest.raises(KeyError, match="a"):
|
||
|
df.loc["a", 0]
|
||
|
|
||
|
with pytest.raises(KeyError, match="a"):
|
||
|
df.at[1, "a"]
|
||
|
with pytest.raises(KeyError, match="a"):
|
||
|
df.loc[1, "a"]
|
||
|
|
||
|
def test_at_series_raises_key_error2(self):
|
||
|
# at should not fallback
|
||
|
# GH#7814
|
||
|
# GH#31724 .at should match .loc
|
||
|
ser = Series([1, 2, 3], index=list("abc"))
|
||
|
result = ser.at["a"]
|
||
|
assert result == 1
|
||
|
result = ser.loc["a"]
|
||
|
assert result == 1
|
||
|
|
||
|
with pytest.raises(KeyError, match="^0$"):
|
||
|
ser.at[0]
|
||
|
with pytest.raises(KeyError, match="^0$"):
|
||
|
ser.loc[0]
|
||
|
|
||
|
def test_at_frame_raises_key_error2(self):
|
||
|
# GH#31724 .at should match .loc
|
||
|
df = DataFrame({"A": [1, 2, 3]}, index=list("abc"))
|
||
|
result = df.at["a", "A"]
|
||
|
assert result == 1
|
||
|
result = df.loc["a", "A"]
|
||
|
assert result == 1
|
||
|
|
||
|
with pytest.raises(KeyError, match="^0$"):
|
||
|
df.at["a", 0]
|
||
|
with pytest.raises(KeyError, match="^0$"):
|
||
|
df.loc["a", 0]
|
||
|
|
||
|
def test_at_getitem_mixed_index_no_fallback(self):
|
||
|
# GH#19860
|
||
|
ser = Series([1, 2, 3, 4, 5], index=["a", "b", "c", 1, 2])
|
||
|
with pytest.raises(KeyError, match="^0$"):
|
||
|
ser.at[0]
|
||
|
with pytest.raises(KeyError, match="^4$"):
|
||
|
ser.at[4]
|