projektAI/venv/Lib/site-packages/pandas/tests/reshape/test_crosstab.py

795 lines
28 KiB
Python
Raw Normal View History

2021-06-06 22:13:05 +02:00
import numpy as np
import pytest
from pandas.core.dtypes.common import is_categorical_dtype
from pandas import CategoricalIndex, DataFrame, Index, MultiIndex, Series, crosstab
import pandas._testing as tm
class TestCrosstab:
def setup_method(self, method):
df = DataFrame(
{
"A": [
"foo",
"foo",
"foo",
"foo",
"bar",
"bar",
"bar",
"bar",
"foo",
"foo",
"foo",
],
"B": [
"one",
"one",
"one",
"two",
"one",
"one",
"one",
"two",
"two",
"two",
"one",
],
"C": [
"dull",
"dull",
"shiny",
"dull",
"dull",
"shiny",
"shiny",
"dull",
"shiny",
"shiny",
"shiny",
],
"D": np.random.randn(11),
"E": np.random.randn(11),
"F": np.random.randn(11),
}
)
self.df = df.append(df, ignore_index=True)
def test_crosstab_single(self):
df = self.df
result = crosstab(df["A"], df["C"])
expected = df.groupby(["A", "C"]).size().unstack()
tm.assert_frame_equal(result, expected.fillna(0).astype(np.int64))
def test_crosstab_multiple(self):
df = self.df
result = crosstab(df["A"], [df["B"], df["C"]])
expected = df.groupby(["A", "B", "C"]).size()
expected = expected.unstack("B").unstack("C").fillna(0).astype(np.int64)
tm.assert_frame_equal(result, expected)
result = crosstab([df["B"], df["C"]], df["A"])
expected = df.groupby(["B", "C", "A"]).size()
expected = expected.unstack("A").fillna(0).astype(np.int64)
tm.assert_frame_equal(result, expected)
def test_crosstab_ndarray(self):
a = np.random.randint(0, 5, size=100)
b = np.random.randint(0, 3, size=100)
c = np.random.randint(0, 10, size=100)
df = DataFrame({"a": a, "b": b, "c": c})
result = crosstab(a, [b, c], rownames=["a"], colnames=("b", "c"))
expected = crosstab(df["a"], [df["b"], df["c"]])
tm.assert_frame_equal(result, expected)
result = crosstab([b, c], a, colnames=["a"], rownames=("b", "c"))
expected = crosstab([df["b"], df["c"]], df["a"])
tm.assert_frame_equal(result, expected)
# assign arbitrary names
result = crosstab(self.df["A"].values, self.df["C"].values)
assert result.index.name == "row_0"
assert result.columns.name == "col_0"
def test_crosstab_non_aligned(self):
# GH 17005
a = Series([0, 1, 1], index=["a", "b", "c"])
b = Series([3, 4, 3, 4, 3], index=["a", "b", "c", "d", "f"])
c = np.array([3, 4, 3])
expected = DataFrame(
[[1, 0], [1, 1]],
index=Index([0, 1], name="row_0"),
columns=Index([3, 4], name="col_0"),
)
result = crosstab(a, b)
tm.assert_frame_equal(result, expected)
result = crosstab(a, c)
tm.assert_frame_equal(result, expected)
def test_crosstab_margins(self):
a = np.random.randint(0, 7, size=100)
b = np.random.randint(0, 3, size=100)
c = np.random.randint(0, 5, size=100)
df = DataFrame({"a": a, "b": b, "c": c})
result = crosstab(a, [b, c], rownames=["a"], colnames=("b", "c"), margins=True)
assert result.index.names == ("a",)
assert result.columns.names == ["b", "c"]
all_cols = result["All", ""]
exp_cols = df.groupby(["a"]).size().astype("i8")
# to keep index.name
exp_margin = Series([len(df)], index=Index(["All"], name="a"))
exp_cols = exp_cols.append(exp_margin)
exp_cols.name = ("All", "")
tm.assert_series_equal(all_cols, exp_cols)
all_rows = result.loc["All"]
exp_rows = df.groupby(["b", "c"]).size().astype("i8")
exp_rows = exp_rows.append(Series([len(df)], index=[("All", "")]))
exp_rows.name = "All"
exp_rows = exp_rows.reindex(all_rows.index)
exp_rows = exp_rows.fillna(0).astype(np.int64)
tm.assert_series_equal(all_rows, exp_rows)
def test_crosstab_margins_set_margin_name(self):
# GH 15972
a = np.random.randint(0, 7, size=100)
b = np.random.randint(0, 3, size=100)
c = np.random.randint(0, 5, size=100)
df = DataFrame({"a": a, "b": b, "c": c})
result = crosstab(
a,
[b, c],
rownames=["a"],
colnames=("b", "c"),
margins=True,
margins_name="TOTAL",
)
assert result.index.names == ("a",)
assert result.columns.names == ["b", "c"]
all_cols = result["TOTAL", ""]
exp_cols = df.groupby(["a"]).size().astype("i8")
# to keep index.name
exp_margin = Series([len(df)], index=Index(["TOTAL"], name="a"))
exp_cols = exp_cols.append(exp_margin)
exp_cols.name = ("TOTAL", "")
tm.assert_series_equal(all_cols, exp_cols)
all_rows = result.loc["TOTAL"]
exp_rows = df.groupby(["b", "c"]).size().astype("i8")
exp_rows = exp_rows.append(Series([len(df)], index=[("TOTAL", "")]))
exp_rows.name = "TOTAL"
exp_rows = exp_rows.reindex(all_rows.index)
exp_rows = exp_rows.fillna(0).astype(np.int64)
tm.assert_series_equal(all_rows, exp_rows)
msg = "margins_name argument must be a string"
for margins_name in [666, None, ["a", "b"]]:
with pytest.raises(ValueError, match=msg):
crosstab(
a,
[b, c],
rownames=["a"],
colnames=("b", "c"),
margins=True,
margins_name=margins_name,
)
def test_crosstab_pass_values(self):
a = np.random.randint(0, 7, size=100)
b = np.random.randint(0, 3, size=100)
c = np.random.randint(0, 5, size=100)
values = np.random.randn(100)
table = crosstab(
[a, b], c, values, aggfunc=np.sum, rownames=["foo", "bar"], colnames=["baz"]
)
df = DataFrame({"foo": a, "bar": b, "baz": c, "values": values})
expected = df.pivot_table(
"values", index=["foo", "bar"], columns="baz", aggfunc=np.sum
)
tm.assert_frame_equal(table, expected)
def test_crosstab_dropna(self):
# GH 3820
a = np.array(["foo", "foo", "foo", "bar", "bar", "foo", "foo"], dtype=object)
b = np.array(["one", "one", "two", "one", "two", "two", "two"], dtype=object)
c = np.array(
["dull", "dull", "dull", "dull", "dull", "shiny", "shiny"], dtype=object
)
res = crosstab(a, [b, c], rownames=["a"], colnames=["b", "c"], dropna=False)
m = MultiIndex.from_tuples(
[("one", "dull"), ("one", "shiny"), ("two", "dull"), ("two", "shiny")],
names=["b", "c"],
)
tm.assert_index_equal(res.columns, m)
def test_crosstab_no_overlap(self):
# GS 10291
s1 = Series([1, 2, 3], index=[1, 2, 3])
s2 = Series([4, 5, 6], index=[4, 5, 6])
actual = crosstab(s1, s2)
expected = DataFrame()
tm.assert_frame_equal(actual, expected)
def test_margin_dropna(self):
# GH 12577
# pivot_table counts null into margin ('All')
# when margins=true and dropna=true
df = DataFrame({"a": [1, 2, 2, 2, 2, np.nan], "b": [3, 3, 4, 4, 4, 4]})
actual = crosstab(df.a, df.b, margins=True, dropna=True)
expected = DataFrame([[1, 0, 1], [1, 3, 4], [2, 3, 5]])
expected.index = Index([1.0, 2.0, "All"], name="a")
expected.columns = Index([3, 4, "All"], name="b")
tm.assert_frame_equal(actual, expected)
df = DataFrame(
{"a": [1, np.nan, np.nan, np.nan, 2, np.nan], "b": [3, np.nan, 4, 4, 4, 4]}
)
actual = crosstab(df.a, df.b, margins=True, dropna=True)
expected = DataFrame([[1, 0, 1], [0, 1, 1], [1, 1, 2]])
expected.index = Index([1.0, 2.0, "All"], name="a")
expected.columns = Index([3.0, 4.0, "All"], name="b")
tm.assert_frame_equal(actual, expected)
df = DataFrame(
{"a": [1, np.nan, np.nan, np.nan, np.nan, 2], "b": [3, 3, 4, 4, 4, 4]}
)
actual = crosstab(df.a, df.b, margins=True, dropna=True)
expected = DataFrame([[1, 0, 1], [0, 1, 1], [1, 1, 2]])
expected.index = Index([1.0, 2.0, "All"], name="a")
expected.columns = Index([3, 4, "All"], name="b")
tm.assert_frame_equal(actual, expected)
# GH 12642
# _add_margins raises KeyError: Level None not found
# when margins=True and dropna=False
df = DataFrame({"a": [1, 2, 2, 2, 2, np.nan], "b": [3, 3, 4, 4, 4, 4]})
actual = crosstab(df.a, df.b, margins=True, dropna=False)
expected = DataFrame([[1, 0, 1], [1, 3, 4], [2, 4, 6]])
expected.index = Index([1.0, 2.0, "All"], name="a")
expected.columns = Index([3, 4, "All"], name="b")
tm.assert_frame_equal(actual, expected)
df = DataFrame(
{"a": [1, np.nan, np.nan, np.nan, 2, np.nan], "b": [3, np.nan, 4, 4, 4, 4]}
)
actual = crosstab(df.a, df.b, margins=True, dropna=False)
expected = DataFrame([[1, 0, 1], [0, 1, 1], [1, 4, 6]])
expected.index = Index([1.0, 2.0, "All"], name="a")
expected.columns = Index([3.0, 4.0, "All"], name="b")
tm.assert_frame_equal(actual, expected)
a = np.array(["foo", "foo", "foo", "bar", "bar", "foo", "foo"], dtype=object)
b = np.array(["one", "one", "two", "one", "two", np.nan, "two"], dtype=object)
c = np.array(
["dull", "dull", "dull", "dull", "dull", "shiny", "shiny"], dtype=object
)
actual = crosstab(
a, [b, c], rownames=["a"], colnames=["b", "c"], margins=True, dropna=False
)
m = MultiIndex.from_arrays(
[
["one", "one", "two", "two", "All"],
["dull", "shiny", "dull", "shiny", ""],
],
names=["b", "c"],
)
expected = DataFrame(
[[1, 0, 1, 0, 2], [2, 0, 1, 1, 5], [3, 0, 2, 1, 7]], columns=m
)
expected.index = Index(["bar", "foo", "All"], name="a")
tm.assert_frame_equal(actual, expected)
actual = crosstab(
[a, b], c, rownames=["a", "b"], colnames=["c"], margins=True, dropna=False
)
m = MultiIndex.from_arrays(
[["bar", "bar", "foo", "foo", "All"], ["one", "two", "one", "two", ""]],
names=["a", "b"],
)
expected = DataFrame(
[[1, 0, 1], [1, 0, 1], [2, 0, 2], [1, 1, 2], [5, 2, 7]], index=m
)
expected.columns = Index(["dull", "shiny", "All"], name="c")
tm.assert_frame_equal(actual, expected)
actual = crosstab(
[a, b], c, rownames=["a", "b"], colnames=["c"], margins=True, dropna=True
)
m = MultiIndex.from_arrays(
[["bar", "bar", "foo", "foo", "All"], ["one", "two", "one", "two", ""]],
names=["a", "b"],
)
expected = DataFrame(
[[1, 0, 1], [1, 0, 1], [2, 0, 2], [1, 1, 2], [5, 1, 6]], index=m
)
expected.columns = Index(["dull", "shiny", "All"], name="c")
tm.assert_frame_equal(actual, expected)
def test_crosstab_normalize(self):
# Issue 12578
df = DataFrame(
{"a": [1, 2, 2, 2, 2], "b": [3, 3, 4, 4, 4], "c": [1, 1, np.nan, 1, 1]}
)
rindex = Index([1, 2], name="a")
cindex = Index([3, 4], name="b")
full_normal = DataFrame([[0.2, 0], [0.2, 0.6]], index=rindex, columns=cindex)
row_normal = DataFrame([[1.0, 0], [0.25, 0.75]], index=rindex, columns=cindex)
col_normal = DataFrame([[0.5, 0], [0.5, 1.0]], index=rindex, columns=cindex)
# Check all normalize args
tm.assert_frame_equal(crosstab(df.a, df.b, normalize="all"), full_normal)
tm.assert_frame_equal(crosstab(df.a, df.b, normalize=True), full_normal)
tm.assert_frame_equal(crosstab(df.a, df.b, normalize="index"), row_normal)
tm.assert_frame_equal(crosstab(df.a, df.b, normalize="columns"), col_normal)
tm.assert_frame_equal(
crosstab(df.a, df.b, normalize=1),
crosstab(df.a, df.b, normalize="columns"),
)
tm.assert_frame_equal(
crosstab(df.a, df.b, normalize=0), crosstab(df.a, df.b, normalize="index")
)
row_normal_margins = DataFrame(
[[1.0, 0], [0.25, 0.75], [0.4, 0.6]],
index=Index([1, 2, "All"], name="a", dtype="object"),
columns=Index([3, 4], name="b", dtype="object"),
)
col_normal_margins = DataFrame(
[[0.5, 0, 0.2], [0.5, 1.0, 0.8]],
index=Index([1, 2], name="a", dtype="object"),
columns=Index([3, 4, "All"], name="b", dtype="object"),
)
all_normal_margins = DataFrame(
[[0.2, 0, 0.2], [0.2, 0.6, 0.8], [0.4, 0.6, 1]],
index=Index([1, 2, "All"], name="a", dtype="object"),
columns=Index([3, 4, "All"], name="b", dtype="object"),
)
tm.assert_frame_equal(
crosstab(df.a, df.b, normalize="index", margins=True), row_normal_margins
)
tm.assert_frame_equal(
crosstab(df.a, df.b, normalize="columns", margins=True), col_normal_margins
)
tm.assert_frame_equal(
crosstab(df.a, df.b, normalize=True, margins=True), all_normal_margins
)
# Test arrays
crosstab(
[np.array([1, 1, 2, 2]), np.array([1, 2, 1, 2])], np.array([1, 2, 1, 2])
)
# Test with aggfunc
norm_counts = DataFrame(
[[0.25, 0, 0.25], [0.25, 0.5, 0.75], [0.5, 0.5, 1]],
index=Index([1, 2, "All"], name="a", dtype="object"),
columns=Index([3, 4, "All"], name="b"),
)
test_case = crosstab(
df.a, df.b, df.c, aggfunc="count", normalize="all", margins=True
)
tm.assert_frame_equal(test_case, norm_counts)
df = DataFrame(
{"a": [1, 2, 2, 2, 2], "b": [3, 3, 4, 4, 4], "c": [0, 4, np.nan, 3, 3]}
)
norm_sum = DataFrame(
[[0, 0, 0.0], [0.4, 0.6, 1], [0.4, 0.6, 1]],
index=Index([1, 2, "All"], name="a", dtype="object"),
columns=Index([3, 4, "All"], name="b", dtype="object"),
)
test_case = crosstab(
df.a, df.b, df.c, aggfunc=np.sum, normalize="all", margins=True
)
tm.assert_frame_equal(test_case, norm_sum)
def test_crosstab_with_empties(self):
# Check handling of empties
df = DataFrame(
{
"a": [1, 2, 2, 2, 2],
"b": [3, 3, 4, 4, 4],
"c": [np.nan, np.nan, np.nan, np.nan, np.nan],
}
)
empty = DataFrame(
[[0.0, 0.0], [0.0, 0.0]],
index=Index([1, 2], name="a", dtype="int64"),
columns=Index([3, 4], name="b"),
)
for i in [True, "index", "columns"]:
calculated = crosstab(df.a, df.b, values=df.c, aggfunc="count", normalize=i)
tm.assert_frame_equal(empty, calculated)
nans = DataFrame(
[[0.0, np.nan], [0.0, 0.0]],
index=Index([1, 2], name="a", dtype="int64"),
columns=Index([3, 4], name="b"),
)
calculated = crosstab(df.a, df.b, values=df.c, aggfunc="count", normalize=False)
tm.assert_frame_equal(nans, calculated)
def test_crosstab_errors(self):
# Issue 12578
df = DataFrame(
{"a": [1, 2, 2, 2, 2], "b": [3, 3, 4, 4, 4], "c": [1, 1, np.nan, 1, 1]}
)
error = "values cannot be used without an aggfunc."
with pytest.raises(ValueError, match=error):
crosstab(df.a, df.b, values=df.c)
error = "aggfunc cannot be used without values"
with pytest.raises(ValueError, match=error):
crosstab(df.a, df.b, aggfunc=np.mean)
error = "Not a valid normalize argument"
with pytest.raises(ValueError, match=error):
crosstab(df.a, df.b, normalize="42")
with pytest.raises(ValueError, match=error):
crosstab(df.a, df.b, normalize=42)
error = "Not a valid margins argument"
with pytest.raises(ValueError, match=error):
crosstab(df.a, df.b, normalize="all", margins=42)
def test_crosstab_with_categorial_columns(self):
# GH 8860
df = DataFrame(
{
"MAKE": ["Honda", "Acura", "Tesla", "Honda", "Honda", "Acura"],
"MODEL": ["Sedan", "Sedan", "Electric", "Pickup", "Sedan", "Sedan"],
}
)
categories = ["Sedan", "Electric", "Pickup"]
df["MODEL"] = df["MODEL"].astype("category").cat.set_categories(categories)
result = crosstab(df["MAKE"], df["MODEL"])
expected_index = Index(["Acura", "Honda", "Tesla"], name="MAKE")
expected_columns = CategoricalIndex(
categories, categories=categories, ordered=False, name="MODEL"
)
expected_data = [[2, 0, 0], [2, 0, 1], [0, 1, 0]]
expected = DataFrame(
expected_data, index=expected_index, columns=expected_columns
)
tm.assert_frame_equal(result, expected)
def test_crosstab_with_numpy_size(self):
# GH 4003
df = DataFrame(
{
"A": ["one", "one", "two", "three"] * 6,
"B": ["A", "B", "C"] * 8,
"C": ["foo", "foo", "foo", "bar", "bar", "bar"] * 4,
"D": np.random.randn(24),
"E": np.random.randn(24),
}
)
result = crosstab(
index=[df["A"], df["B"]],
columns=[df["C"]],
margins=True,
aggfunc=np.size,
values=df["D"],
)
expected_index = MultiIndex(
levels=[["All", "one", "three", "two"], ["", "A", "B", "C"]],
codes=[[1, 1, 1, 2, 2, 2, 3, 3, 3, 0], [1, 2, 3, 1, 2, 3, 1, 2, 3, 0]],
names=["A", "B"],
)
expected_column = Index(["bar", "foo", "All"], dtype="object", name="C")
expected_data = np.array(
[
[2.0, 2.0, 4.0],
[2.0, 2.0, 4.0],
[2.0, 2.0, 4.0],
[2.0, np.nan, 2.0],
[np.nan, 2.0, 2.0],
[2.0, np.nan, 2.0],
[np.nan, 2.0, 2.0],
[2.0, np.nan, 2.0],
[np.nan, 2.0, 2.0],
[12.0, 12.0, 24.0],
]
)
expected = DataFrame(
expected_data, index=expected_index, columns=expected_column
)
tm.assert_frame_equal(result, expected)
def test_crosstab_duplicate_names(self):
# GH 13279 / 22529
s1 = Series(range(3), name="foo")
s2_foo = Series(range(1, 4), name="foo")
s2_bar = Series(range(1, 4), name="bar")
s3 = Series(range(3), name="waldo")
# check result computed with duplicate labels against
# result computed with unique labels, then relabelled
mapper = {"bar": "foo"}
# duplicate row, column labels
result = crosstab(s1, s2_foo)
expected = crosstab(s1, s2_bar).rename_axis(columns=mapper, axis=1)
tm.assert_frame_equal(result, expected)
# duplicate row, unique column labels
result = crosstab([s1, s2_foo], s3)
expected = crosstab([s1, s2_bar], s3).rename_axis(index=mapper, axis=0)
tm.assert_frame_equal(result, expected)
# unique row, duplicate column labels
result = crosstab(s3, [s1, s2_foo])
expected = crosstab(s3, [s1, s2_bar]).rename_axis(columns=mapper, axis=1)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("names", [["a", ("b", "c")], [("a", "b"), "c"]])
def test_crosstab_tuple_name(self, names):
s1 = Series(range(3), name=names[0])
s2 = Series(range(1, 4), name=names[1])
mi = MultiIndex.from_arrays([range(3), range(1, 4)], names=names)
expected = Series(1, index=mi).unstack(1, fill_value=0)
result = crosstab(s1, s2)
tm.assert_frame_equal(result, expected)
def test_crosstab_both_tuple_names(self):
# GH 18321
s1 = Series(range(3), name=("a", "b"))
s2 = Series(range(3), name=("c", "d"))
expected = DataFrame(
np.eye(3, dtype="int64"),
index=Index(range(3), name=("a", "b")),
columns=Index(range(3), name=("c", "d")),
)
result = crosstab(s1, s2)
tm.assert_frame_equal(result, expected)
def test_crosstab_unsorted_order(self):
df = DataFrame({"b": [3, 1, 2], "a": [5, 4, 6]}, index=["C", "A", "B"])
result = crosstab(df.index, [df.b, df.a])
e_idx = Index(["A", "B", "C"], name="row_0")
e_columns = MultiIndex.from_tuples([(1, 4), (2, 6), (3, 5)], names=["b", "a"])
expected = DataFrame(
[[1, 0, 0], [0, 1, 0], [0, 0, 1]], index=e_idx, columns=e_columns
)
tm.assert_frame_equal(result, expected)
def test_crosstab_normalize_multiple_columns(self):
# GH 15150
df = DataFrame(
{
"A": ["one", "one", "two", "three"] * 6,
"B": ["A", "B", "C"] * 8,
"C": ["foo", "foo", "foo", "bar", "bar", "bar"] * 4,
"D": [0] * 24,
"E": [0] * 24,
}
)
result = crosstab(
[df.A, df.B],
df.C,
values=df.D,
aggfunc=np.sum,
normalize=True,
margins=True,
)
expected = DataFrame(
np.array([0] * 29 + [1], dtype=float).reshape(10, 3),
columns=Index(["bar", "foo", "All"], dtype="object", name="C"),
index=MultiIndex.from_tuples(
[
("one", "A"),
("one", "B"),
("one", "C"),
("three", "A"),
("three", "B"),
("three", "C"),
("two", "A"),
("two", "B"),
("two", "C"),
("All", ""),
],
names=["A", "B"],
),
)
tm.assert_frame_equal(result, expected)
def test_margin_normalize(self):
# GH 27500
df = DataFrame(
{
"A": ["foo", "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"],
"B": ["one", "one", "one", "two", "two", "one", "one", "two", "two"],
"C": [
"small",
"large",
"large",
"small",
"small",
"large",
"small",
"small",
"large",
],
"D": [1, 2, 2, 3, 3, 4, 5, 6, 7],
"E": [2, 4, 5, 5, 6, 6, 8, 9, 9],
}
)
# normalize on index
result = crosstab(
[df.A, df.B], df.C, margins=True, margins_name="Sub-Total", normalize=0
)
expected = DataFrame(
[[0.5, 0.5], [0.5, 0.5], [0.666667, 0.333333], [0, 1], [0.444444, 0.555556]]
)
expected.index = MultiIndex(
levels=[["Sub-Total", "bar", "foo"], ["", "one", "two"]],
codes=[[1, 1, 2, 2, 0], [1, 2, 1, 2, 0]],
names=["A", "B"],
)
expected.columns = Index(["large", "small"], dtype="object", name="C")
tm.assert_frame_equal(result, expected)
# normalize on columns
result = crosstab(
[df.A, df.B], df.C, margins=True, margins_name="Sub-Total", normalize=1
)
expected = DataFrame(
[
[0.25, 0.2, 0.222222],
[0.25, 0.2, 0.222222],
[0.5, 0.2, 0.333333],
[0, 0.4, 0.222222],
]
)
expected.columns = Index(
["large", "small", "Sub-Total"], dtype="object", name="C"
)
expected.index = MultiIndex(
levels=[["bar", "foo"], ["one", "two"]],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=["A", "B"],
)
tm.assert_frame_equal(result, expected)
# normalize on both index and column
result = crosstab(
[df.A, df.B], df.C, margins=True, margins_name="Sub-Total", normalize=True
)
expected = DataFrame(
[
[0.111111, 0.111111, 0.222222],
[0.111111, 0.111111, 0.222222],
[0.222222, 0.111111, 0.333333],
[0.000000, 0.222222, 0.222222],
[0.444444, 0.555555, 1],
]
)
expected.columns = Index(
["large", "small", "Sub-Total"], dtype="object", name="C"
)
expected.index = MultiIndex(
levels=[["Sub-Total", "bar", "foo"], ["", "one", "two"]],
codes=[[1, 1, 2, 2, 0], [1, 2, 1, 2, 0]],
names=["A", "B"],
)
tm.assert_frame_equal(result, expected)
def test_margin_normalize_multiple_columns(self):
# GH 35144
# use multiple columns with margins and normalization
df = DataFrame(
{
"A": ["foo", "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"],
"B": ["one", "one", "one", "two", "two", "one", "one", "two", "two"],
"C": [
"small",
"large",
"large",
"small",
"small",
"large",
"small",
"small",
"large",
],
"D": [1, 2, 2, 3, 3, 4, 5, 6, 7],
"E": [2, 4, 5, 5, 6, 6, 8, 9, 9],
}
)
result = crosstab(
index=df.C,
columns=[df.A, df.B],
margins=True,
margins_name="margin",
normalize=True,
)
expected = DataFrame(
[
[0.111111, 0.111111, 0.222222, 0.000000, 0.444444],
[0.111111, 0.111111, 0.111111, 0.222222, 0.555556],
[0.222222, 0.222222, 0.333333, 0.222222, 1.0],
],
index=["large", "small", "margin"],
)
expected.columns = MultiIndex(
levels=[["bar", "foo", "margin"], ["", "one", "two"]],
codes=[[0, 0, 1, 1, 2], [1, 2, 1, 2, 0]],
names=["A", "B"],
)
expected.index.name = "C"
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("a_dtype", ["category", "int64"])
@pytest.mark.parametrize("b_dtype", ["category", "int64"])
def test_categoricals(a_dtype, b_dtype):
# https://github.com/pandas-dev/pandas/issues/37465
g = np.random.RandomState(25982704)
a = Series(g.randint(0, 3, size=100)).astype(a_dtype)
b = Series(g.randint(0, 2, size=100)).astype(b_dtype)
result = crosstab(a, b, margins=True, dropna=False)
columns = Index([0, 1, "All"], dtype="object", name="col_0")
index = Index([0, 1, 2, "All"], dtype="object", name="row_0")
values = [[18, 16, 34], [18, 16, 34], [16, 16, 32], [52, 48, 100]]
expected = DataFrame(values, index, columns)
tm.assert_frame_equal(result, expected)
# Verify when categorical does not have all values present
a.loc[a == 1] = 2
a_is_cat = is_categorical_dtype(a.dtype)
assert not a_is_cat or a.value_counts().loc[1] == 0
result = crosstab(a, b, margins=True, dropna=False)
values = [[18, 16, 34], [0, 0, np.nan], [34, 32, 66], [52, 48, 100]]
expected = DataFrame(values, index, columns)
if not a_is_cat:
expected = expected.loc[[0, 2, "All"]]
expected["All"] = expected["All"].astype("int64")
print(result)
print(expected)
print(expected.loc[[0, 2, "All"]])
tm.assert_frame_equal(result, expected)