89 lines
2.6 KiB
Python
89 lines
2.6 KiB
Python
|
import pytest
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from sklearn.impute._base import _BaseImputer
|
||
|
from sklearn.utils._mask import _get_mask
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def data():
|
||
|
X = np.random.randn(10, 2)
|
||
|
X[::2] = np.nan
|
||
|
return X
|
||
|
|
||
|
|
||
|
class NoFitIndicatorImputer(_BaseImputer):
|
||
|
def fit(self, X, y=None):
|
||
|
return self
|
||
|
|
||
|
def transform(self, X, y=None):
|
||
|
return self._concatenate_indicator(X, self._transform_indicator(X))
|
||
|
|
||
|
|
||
|
class NoTransformIndicatorImputer(_BaseImputer):
|
||
|
def fit(self, X, y=None):
|
||
|
mask = _get_mask(X, value_to_mask=np.nan)
|
||
|
super()._fit_indicator(mask)
|
||
|
return self
|
||
|
|
||
|
def transform(self, X, y=None):
|
||
|
return self._concatenate_indicator(X, None)
|
||
|
|
||
|
|
||
|
class NoPrecomputedMaskFit(_BaseImputer):
|
||
|
def fit(self, X, y=None):
|
||
|
self._fit_indicator(X)
|
||
|
return self
|
||
|
|
||
|
def transform(self, X):
|
||
|
return self._concatenate_indicator(X, self._transform_indicator(X))
|
||
|
|
||
|
|
||
|
class NoPrecomputedMaskTransform(_BaseImputer):
|
||
|
def fit(self, X, y=None):
|
||
|
mask = _get_mask(X, value_to_mask=np.nan)
|
||
|
self._fit_indicator(mask)
|
||
|
return self
|
||
|
|
||
|
def transform(self, X):
|
||
|
return self._concatenate_indicator(X, self._transform_indicator(X))
|
||
|
|
||
|
|
||
|
def test_base_imputer_not_fit(data):
|
||
|
imputer = NoFitIndicatorImputer(add_indicator=True)
|
||
|
err_msg = "Make sure to call _fit_indicator before _transform_indicator"
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
imputer.fit(data).transform(data)
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
imputer.fit_transform(data)
|
||
|
|
||
|
|
||
|
def test_base_imputer_not_transform(data):
|
||
|
imputer = NoTransformIndicatorImputer(add_indicator=True)
|
||
|
err_msg = ("Call _fit_indicator and _transform_indicator in the "
|
||
|
"imputer implementation")
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
imputer.fit(data).transform(data)
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
imputer.fit_transform(data)
|
||
|
|
||
|
|
||
|
def test_base_no_precomputed_mask_fit(data):
|
||
|
imputer = NoPrecomputedMaskFit(add_indicator=True)
|
||
|
err_msg = "precomputed is True but the input data is not a mask"
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
imputer.fit(data)
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
imputer.fit_transform(data)
|
||
|
|
||
|
|
||
|
def test_base_no_precomputed_mask_transform(data):
|
||
|
imputer = NoPrecomputedMaskTransform(add_indicator=True)
|
||
|
err_msg = "precomputed is True but the input data is not a mask"
|
||
|
imputer.fit(data)
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
imputer.transform(data)
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
imputer.fit_transform(data)
|