92 lines
3.2 KiB
Python
92 lines
3.2 KiB
Python
|
# Authors: Gael Varoquaux <gael.varoquaux@normalesup.org>
|
||
|
# Justin Vincent
|
||
|
# Lars Buitinck
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import math
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
import scipy.stats
|
||
|
|
||
|
from sklearn.utils._testing import assert_array_equal
|
||
|
|
||
|
from sklearn.utils.fixes import _joblib_parallel_args
|
||
|
from sklearn.utils.fixes import _object_dtype_isnan
|
||
|
from sklearn.utils.fixes import loguniform
|
||
|
from sklearn.utils.fixes import MaskedArray
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('joblib_version', ('0.11', '0.12.0'))
|
||
|
def test_joblib_parallel_args(monkeypatch, joblib_version):
|
||
|
import joblib
|
||
|
monkeypatch.setattr(joblib, '__version__', joblib_version)
|
||
|
|
||
|
if joblib_version == '0.12.0':
|
||
|
# arguments are simply passed through
|
||
|
assert _joblib_parallel_args(prefer='threads') == {'prefer': 'threads'}
|
||
|
assert _joblib_parallel_args(prefer='processes', require=None) == {
|
||
|
'prefer': 'processes', 'require': None}
|
||
|
assert _joblib_parallel_args(non_existing=1) == {'non_existing': 1}
|
||
|
elif joblib_version == '0.11':
|
||
|
# arguments are mapped to the corresponding backend
|
||
|
assert _joblib_parallel_args(prefer='threads') == {
|
||
|
'backend': 'threading'}
|
||
|
assert _joblib_parallel_args(prefer='processes') == {
|
||
|
'backend': 'multiprocessing'}
|
||
|
with pytest.raises(ValueError):
|
||
|
_joblib_parallel_args(prefer='invalid')
|
||
|
assert _joblib_parallel_args(
|
||
|
prefer='processes', require='sharedmem') == {
|
||
|
'backend': 'threading'}
|
||
|
with pytest.raises(ValueError):
|
||
|
_joblib_parallel_args(require='invalid')
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
_joblib_parallel_args(verbose=True)
|
||
|
else:
|
||
|
raise ValueError
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype, val", ([object, 1],
|
||
|
[object, "a"],
|
||
|
[float, 1]))
|
||
|
def test_object_dtype_isnan(dtype, val):
|
||
|
X = np.array([[val, np.nan],
|
||
|
[np.nan, val]], dtype=dtype)
|
||
|
|
||
|
expected_mask = np.array([[False, True],
|
||
|
[True, False]])
|
||
|
|
||
|
mask = _object_dtype_isnan(X)
|
||
|
|
||
|
assert_array_equal(mask, expected_mask)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("low,high,base",
|
||
|
[(-1, 0, 10), (0, 2, np.exp(1)), (-1, 1, 2)])
|
||
|
def test_loguniform(low, high, base):
|
||
|
rv = loguniform(base ** low, base ** high)
|
||
|
assert isinstance(rv, scipy.stats._distn_infrastructure.rv_frozen)
|
||
|
rvs = rv.rvs(size=2000, random_state=0)
|
||
|
|
||
|
# Test the basics; right bounds, right size
|
||
|
assert (base ** low <= rvs).all() and (rvs <= base ** high).all()
|
||
|
assert len(rvs) == 2000
|
||
|
|
||
|
# Test that it's actually (fairly) uniform
|
||
|
log_rvs = np.array([math.log(x, base) for x in rvs])
|
||
|
counts, _ = np.histogram(log_rvs)
|
||
|
assert counts.mean() == 200
|
||
|
assert np.abs(counts - counts.mean()).max() <= 40
|
||
|
|
||
|
# Test that random_state works
|
||
|
assert (
|
||
|
loguniform(base ** low, base ** high).rvs(random_state=0)
|
||
|
== loguniform(base ** low, base ** high).rvs(random_state=0)
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_masked_array_deprecated(): # TODO: remove in 1.0
|
||
|
with pytest.warns(FutureWarning, match='is deprecated'):
|
||
|
MaskedArray()
|