# Sebastian Raschka 2014-2020 # myxtend Machine Learning Library Extensions # Author: Sebastian Raschka # # License: BSD 3 clause import numpy as np import pandas as pd from ..frequent_patterns import fpcommon as fpc def generate_new_combinations(old_combinations): """ Generator of all combinations based on the last state of Apriori algorithm Parameters ----------- old_combinations: np.array All combinations with enough support in the last step Combinations are represented by a matrix. Number of columns is equal to the combination size of the previous step. Each row represents one combination and contains item type ids in the ascending order ``` 0 1 0 15 20 1 15 22 2 17 19 ``` Returns ----------- Generator of all combinations from the last step x items from the previous step. Examples ----------- For usage examples, please see http://rasbt.github.io/mlxtend/user_guide/frequent_patterns/apriori """ items_types_in_previous_step = np.unique(old_combinations.flatten()) for old_combination in old_combinations: max_combination = old_combination[-1] mask = items_types_in_previous_step > max_combination valid_items = items_types_in_previous_step[mask] old_tuple = tuple(old_combination) for item in valid_items: yield from old_tuple yield item def generate_new_combinations_low_memory(old_combinations, X, min_support, is_sparse): """ Generator of all combinations based on the last state of Apriori algorithm Parameters ----------- old_combinations: np.array All combinations with enough support in the last step Combinations are represented by a matrix. Number of columns is equal to the combination size of the previous step. Each row represents one combination and contains item type ids in the ascending order ``` 0 1 0 15 20 1 15 22 2 17 19 ``` X: np.array or scipy sparse matrix The allowed values are either 0/1 or True/False. For example, ``` 0 True False True True False True 1 True False True False False True 2 True False True False False False 3 True True False False False False 4 False False True True True True 5 False False True False True True 6 False False True False True False 7 True True False False False False ``` min_support : float (default: 0.5) A float between 0 and 1 for minumum support of the itemsets returned. The support is computed as the fraction `transactions_where_item(s)_occur / total_transactions`. is_sparse : bool True if X is sparse Returns ----------- Generator of all combinations from the last step x items from the previous step. Every combination contains the number of transactions where this item occurs, followed by item type ids in the ascending order. No combination other than generated do not have a chance to get enough support Examples ----------- For usage examples, please see http://rasbt.github.io/mlxtend/user_guide/frequent_patterns/generate_new_combinations/ """ items_types_in_previous_step = np.unique(old_combinations.flatten()) rows_count = X.shape[0] threshold = min_support * rows_count for old_combination in old_combinations: max_combination = old_combination[-1] mask = items_types_in_previous_step > max_combination valid_items = items_types_in_previous_step[mask] old_tuple = tuple(old_combination) if is_sparse: mask_rows = X[:, old_tuple].toarray().all(axis=1) X_cols = X[:, valid_items].toarray() supports = X_cols[mask_rows].sum(axis=0) else: mask_rows = X[:, old_tuple].all(axis=1) supports = X[mask_rows][:, valid_items].sum(axis=0) valid_indices = (supports >= threshold).nonzero()[0] for index in valid_indices: yield supports[index] yield from old_tuple yield valid_items[index] def apriori(df, min_support=0.5, use_colnames=False, max_len=None, verbose=0, low_memory=False): """Get frequent itemsets from a one-hot DataFrame Parameters ----------- df : pandas DataFrame pandas DataFrame the encoded format. Also supports DataFrames with sparse data; for more info, please see (https://pandas.pydata.org/pandas-docs/stable/ user_guide/sparse.html#sparse-data-structures) Please note that the old pandas SparseDataFrame format is no longer supported in mlxtend >= 0.17.2. The allowed values are either 0/1 or True/False. For example, ``` Apple Bananas Beer Chicken Milk Rice 0 True False True True False True 1 True False True False False True 2 True False True False False False 3 True True False False False False 4 False False True True True True 5 False False True False True True 6 False False True False True False 7 True True False False False False ``` min_support : float (default: 0.5) A float between 0 and 1 for minumum support of the itemsets returned. The support is computed as the fraction `transactions_where_item(s)_occur / total_transactions`. use_colnames : bool (default: False) If `True`, uses the DataFrames' column names in the returned DataFrame instead of column indices. max_len : int (default: None) Maximum length of the itemsets generated. If `None` (default) all possible itemsets lengths (under the apriori condition) are evaluated. verbose : int (default: 0) Shows the number of iterations if >= 1 and `low_memory` is `True`. If >=1 and `low_memory` is `False`, shows the number of combinations. low_memory : bool (default: False) If `True`, uses an iterator to search for combinations above `min_support`. Note that while `low_memory=True` should only be used for large dataset if memory resources are limited, because this implementation is approx. 3-6x slower than the default. Returns ----------- pandas DataFrame with columns ['support', 'itemsets'] of all itemsets that are >= `min_support` and < than `max_len` (if `max_len` is not None). Each itemset in the 'itemsets' column is of type `frozenset`, which is a Python built-in type that behaves similarly to sets except that it is immutable (For more info, see https://docs.python.org/3.6/library/stdtypes.html#frozenset). Examples ----------- For usage examples, please see http://rasbt.github.io/mlxtend/user_guide/frequent_patterns/apriori/ """ def _support(_x, _n_rows, _is_sparse): """DRY private method to calculate support as the row-wise sum of values / number of rows Parameters ----------- _x : matrix of bools or binary _n_rows : numeric, number of rows in _x _is_sparse : bool True if _x is sparse Returns ----------- np.array, shape = (n_rows, ) Examples ----------- For usage examples, please see http://rasbt.github.io/mlxtend/user_guide/frequent_patterns/apriori/ """ out = (np.sum(_x, axis=0) / _n_rows) return np.array(out).reshape(-1) if min_support <= 0.: raise ValueError('`min_support` must be a positive ' 'number within the interval `(0, 1]`. ' 'Got %s.' % min_support) fpc.valid_input_check(df) if hasattr(df, "sparse"): # DataFrame with SparseArray (pandas >= 0.24) if df.size == 0: X = df.values else: X = df.sparse.to_coo().tocsc() is_sparse = True else: # dense DataFrame X = df.values is_sparse = False support = _support(X, X.shape[0], is_sparse) ary_col_idx = np.arange(X.shape[1]) support_dict = {1: support[support >= min_support]} itemset_dict = {1: ary_col_idx[support >= min_support].reshape(-1, 1)} max_itemset = 1 rows_count = float(X.shape[0]) all_ones = np.ones((int(rows_count), 1)) while max_itemset and max_itemset < (max_len or float('inf')): next_max_itemset = max_itemset + 1 # With exceptionally large datasets, the matrix operations can use a # substantial amount of memory. For low memory applications or large # datasets, set `low_memory=True` to use a slower but more memory- # efficient implementation. if low_memory: combin = generate_new_combinations_low_memory( itemset_dict[max_itemset], X, min_support, is_sparse) # slightly faster than creating an array from a list of tuples combin = np.fromiter(combin, dtype=int) combin = combin.reshape(-1, next_max_itemset + 1) if combin.size == 0: break if verbose: print( '\rProcessing %d combinations | Sampling itemset size %d' % (combin.size, next_max_itemset), end="") itemset_dict[next_max_itemset] = combin[:, 1:] support_dict[next_max_itemset] = combin[:, 0].astype(float) \ / rows_count max_itemset = next_max_itemset else: combin = generate_new_combinations(itemset_dict[max_itemset]) combin = np.fromiter(combin, dtype=int) combin = combin.reshape(-1, next_max_itemset) if combin.size == 0: break if verbose: print( '\rProcessing %d combinations | Sampling itemset size %d' % (combin.size, next_max_itemset), end="") if is_sparse: _bools = X[:, combin[:, 0]] == all_ones for n in range(1, combin.shape[1]): _bools = _bools & (X[:, combin[:, n]] == all_ones) else: _bools = np.all(X[:, combin], axis=2) support = _support(np.array(_bools), rows_count, is_sparse) _mask = (support >= min_support).reshape(-1) if any(_mask): itemset_dict[next_max_itemset] = np.array(combin[_mask]) support_dict[next_max_itemset] = np.array(support[_mask]) max_itemset = next_max_itemset else: # Exit condition break all_res = [] for k in sorted(itemset_dict): support = pd.Series(support_dict[k]) itemsets = pd.Series([frozenset(i) for i in itemset_dict[k]], dtype='object') res = pd.concat((support, itemsets), axis=1) all_res.append(res) res_df = pd.concat(all_res) res_df.columns = ['support', 'itemsets'] if use_colnames: mapping = {idx: item for idx, item in enumerate(df.columns)} res_df['itemsets'] = res_df['itemsets'].apply(lambda x: frozenset([ mapping[i] for i in x])) res_df = res_df.reset_index(drop=True) if verbose: print() # adds newline if verbose counter was used return res_df