import numpy as np import pytest from pandas.compat.numpy import np_version_under1p17 from pandas import DataFrame, Series import pandas._testing as tm import pandas.core.common as com class TestSample: @pytest.fixture(params=[Series, DataFrame]) def obj(self, request): klass = request.param if klass is Series: arr = np.random.randn(10) else: arr = np.random.randn(10, 10) return klass(arr, dtype=None) @pytest.mark.parametrize("test", list(range(10))) def test_sample(self, test, obj): # Fixes issue: 2419 # Check behavior of random_state argument # Check for stability when receives seed or random state -- run 10 # times. seed = np.random.randint(0, 100) tm.assert_equal( obj.sample(n=4, random_state=seed), obj.sample(n=4, random_state=seed) ) tm.assert_equal( obj.sample(frac=0.7, random_state=seed), obj.sample(frac=0.7, random_state=seed), ) tm.assert_equal( obj.sample(n=4, random_state=np.random.RandomState(test)), obj.sample(n=4, random_state=np.random.RandomState(test)), ) tm.assert_equal( obj.sample(frac=0.7, random_state=np.random.RandomState(test)), obj.sample(frac=0.7, random_state=np.random.RandomState(test)), ) tm.assert_equal( obj.sample(frac=2, replace=True, random_state=np.random.RandomState(test)), obj.sample(frac=2, replace=True, random_state=np.random.RandomState(test)), ) os1, os2 = [], [] for _ in range(2): np.random.seed(test) os1.append(obj.sample(n=4)) os2.append(obj.sample(frac=0.7)) tm.assert_equal(*os1) tm.assert_equal(*os2) def test_sample_lengths(self, obj): # Check lengths are right assert len(obj.sample(n=4) == 4) assert len(obj.sample(frac=0.34) == 3) assert len(obj.sample(frac=0.36) == 4) def test_sample_invalid_random_state(self, obj): # Check for error when random_state argument invalid. with pytest.raises(ValueError): obj.sample(random_state="astring!") def test_sample_wont_accept_n_and_frac(self, obj): # Giving both frac and N throws error with pytest.raises(ValueError): obj.sample(n=3, frac=0.3) def test_sample_requires_positive_n_frac(self, obj): with pytest.raises(ValueError): obj.sample(n=-3) with pytest.raises(ValueError): obj.sample(frac=-0.3) def test_sample_requires_integer_n(self, obj): # Make sure float values of `n` give error with pytest.raises(ValueError): obj.sample(n=3.2) def test_sample_invalid_weight_lengths(self, obj): # Weight length must be right with pytest.raises(ValueError): obj.sample(n=3, weights=[0, 1]) with pytest.raises(ValueError): bad_weights = [0.5] * 11 obj.sample(n=3, weights=bad_weights) with pytest.raises(ValueError): bad_weight_series = Series([0, 0, 0.2]) obj.sample(n=4, weights=bad_weight_series) def test_sample_negative_weights(self, obj): # Check won't accept negative weights with pytest.raises(ValueError): bad_weights = [-0.1] * 10 obj.sample(n=3, weights=bad_weights) def test_sample_inf_weights(self, obj): # Check inf and -inf throw errors: with pytest.raises(ValueError): weights_with_inf = [0.1] * 10 weights_with_inf[0] = np.inf obj.sample(n=3, weights=weights_with_inf) with pytest.raises(ValueError): weights_with_ninf = [0.1] * 10 weights_with_ninf[0] = -np.inf obj.sample(n=3, weights=weights_with_ninf) def test_sample_zero_weights(self, obj): # All zeros raises errors zero_weights = [0] * 10 with pytest.raises(ValueError): obj.sample(n=3, weights=zero_weights) def test_sample_missing_weights(self, obj): # All missing weights nan_weights = [np.nan] * 10 with pytest.raises(ValueError): obj.sample(n=3, weights=nan_weights) def test_sample_none_weights(self, obj): # Check None are also replaced by zeros. weights_with_None = [None] * 10 weights_with_None[5] = 0.5 tm.assert_equal( obj.sample(n=1, axis=0, weights=weights_with_None), obj.iloc[5:6] ) @pytest.mark.parametrize( "func_str,arg", [ ("np.array", [2, 3, 1, 0]), pytest.param( "np.random.MT19937", 3, marks=pytest.mark.skipif(np_version_under1p17, reason="NumPy<1.17"), ), pytest.param( "np.random.PCG64", 11, marks=pytest.mark.skipif(np_version_under1p17, reason="NumPy<1.17"), ), ], ) def test_sample_random_state(self, func_str, arg, frame_or_series): # GH#32503 obj = DataFrame({"col1": range(10, 20), "col2": range(20, 30)}) if frame_or_series is Series: obj = obj["col1"] result = obj.sample(n=3, random_state=eval(func_str)(arg)) expected = obj.sample(n=3, random_state=com.random_state(eval(func_str)(arg))) tm.assert_equal(result, expected) def test_sample_upsampling_without_replacement(self, frame_or_series): # GH#27451 obj = DataFrame({"A": list("abc")}) if frame_or_series is Series: obj = obj["A"] msg = ( "Replace has to be set to `True` when " "upsampling the population `frac` > 1." ) with pytest.raises(ValueError, match=msg): obj.sample(frac=2, replace=False) class TestSampleDataFrame: # Tests which are relevant only for DataFrame, so these are # as fully parametrized as they can get. def test_sample(self): # GH#2419 # additional specific object based tests # A few dataframe test with degenerate weights. easy_weight_list = [0] * 10 easy_weight_list[5] = 1 df = DataFrame( { "col1": range(10, 20), "col2": range(20, 30), "colString": ["a"] * 10, "easyweights": easy_weight_list, } ) sample1 = df.sample(n=1, weights="easyweights") tm.assert_frame_equal(sample1, df.iloc[5:6]) # Ensure proper error if string given as weight for Series or # DataFrame with axis = 1. ser = Series(range(10)) with pytest.raises(ValueError): ser.sample(n=3, weights="weight_column") with pytest.raises(ValueError): df.sample(n=1, weights="weight_column", axis=1) # Check weighting key error with pytest.raises( KeyError, match="'String passed to weights not a valid column'" ): df.sample(n=3, weights="not_a_real_column_name") # Check that re-normalizes weights that don't sum to one. weights_less_than_1 = [0] * 10 weights_less_than_1[0] = 0.5 tm.assert_frame_equal(df.sample(n=1, weights=weights_less_than_1), df.iloc[:1]) ### # Test axis argument ### # Test axis argument df = DataFrame({"col1": range(10), "col2": ["a"] * 10}) second_column_weight = [0, 1] tm.assert_frame_equal( df.sample(n=1, axis=1, weights=second_column_weight), df[["col2"]] ) # Different axis arg types tm.assert_frame_equal( df.sample(n=1, axis="columns", weights=second_column_weight), df[["col2"]] ) weight = [0] * 10 weight[5] = 0.5 tm.assert_frame_equal(df.sample(n=1, axis="rows", weights=weight), df.iloc[5:6]) tm.assert_frame_equal( df.sample(n=1, axis="index", weights=weight), df.iloc[5:6] ) # Check out of range axis values with pytest.raises(ValueError): df.sample(n=1, axis=2) with pytest.raises(ValueError): df.sample(n=1, axis="not_a_name") with pytest.raises(ValueError): ser = Series(range(10)) ser.sample(n=1, axis=1) # Test weight length compared to correct axis with pytest.raises(ValueError): df.sample(n=1, axis=1, weights=[0.5] * 10) def test_sample_axis1(self): # Check weights with axis = 1 easy_weight_list = [0] * 3 easy_weight_list[2] = 1 df = DataFrame( {"col1": range(10, 20), "col2": range(20, 30), "colString": ["a"] * 10} ) sample1 = df.sample(n=1, axis=1, weights=easy_weight_list) tm.assert_frame_equal(sample1, df[["colString"]]) # Test default axes tm.assert_frame_equal( df.sample(n=3, random_state=42), df.sample(n=3, axis=0, random_state=42) ) def test_sample_aligns_weights_with_frame(self): # Test that function aligns weights with frame df = DataFrame({"col1": [5, 6, 7], "col2": ["a", "b", "c"]}, index=[9, 5, 3]) ser = Series([1, 0, 0], index=[3, 5, 9]) tm.assert_frame_equal(df.loc[[3]], df.sample(1, weights=ser)) # Weights have index values to be dropped because not in # sampled DataFrame ser2 = Series([0.001, 0, 10000], index=[3, 5, 10]) tm.assert_frame_equal(df.loc[[3]], df.sample(1, weights=ser2)) # Weights have empty values to be filed with zeros ser3 = Series([0.01, 0], index=[3, 5]) tm.assert_frame_equal(df.loc[[3]], df.sample(1, weights=ser3)) # No overlap in weight and sampled DataFrame indices ser4 = Series([1, 0], index=[1, 2]) with pytest.raises(ValueError): df.sample(1, weights=ser4) def test_sample_is_copy(self): # GH#27357, GH#30784: ensure the result of sample is an actual copy and # doesn't track the parent dataframe / doesn't give SettingWithCopy warnings df = DataFrame(np.random.randn(10, 3), columns=["a", "b", "c"]) df2 = df.sample(3) with tm.assert_produces_warning(None): df2["d"] = 1