from datetime import datetime import dateutil import numpy as np import pytest import pytz from pandas._libs.tslibs.ccalendar import DAYS, MONTHS from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.errors import InvalidIndexError import pandas as pd from pandas import DataFrame, Series, Timestamp import pandas._testing as tm from pandas.core.indexes.datetimes import date_range from pandas.core.indexes.period import Period, PeriodIndex, period_range from pandas.core.resample import _get_period_range_edges import pandas.tseries.offsets as offsets @pytest.fixture() def _index_factory(): return period_range @pytest.fixture def _series_name(): return "pi" class TestPeriodIndex: @pytest.mark.parametrize("freq", ["2D", "1H", "2H"]) @pytest.mark.parametrize("kind", ["period", None, "timestamp"]) def test_asfreq(self, series_and_frame, freq, kind): # GH 12884, 15944 # make sure .asfreq() returns PeriodIndex (except kind='timestamp') obj = series_and_frame if kind == "timestamp": expected = obj.to_timestamp().resample(freq).asfreq() else: start = obj.index[0].to_timestamp(how="start") end = (obj.index[-1] + obj.index.freq).to_timestamp(how="start") new_index = date_range(start=start, end=end, freq=freq, closed="left") expected = obj.to_timestamp().reindex(new_index).to_period(freq) result = obj.resample(freq, kind=kind).asfreq() tm.assert_almost_equal(result, expected) def test_asfreq_fill_value(self, series): # test for fill value during resampling, issue 3715 s = series new_index = date_range( s.index[0].to_timestamp(how="start"), (s.index[-1]).to_timestamp(how="start"), freq="1H", ) expected = s.to_timestamp().reindex(new_index, fill_value=4.0) result = s.resample("1H", kind="timestamp").asfreq(fill_value=4.0) tm.assert_series_equal(result, expected) frame = s.to_frame("value") new_index = date_range( frame.index[0].to_timestamp(how="start"), (frame.index[-1]).to_timestamp(how="start"), freq="1H", ) expected = frame.to_timestamp().reindex(new_index, fill_value=3.0) result = frame.resample("1H", kind="timestamp").asfreq(fill_value=3.0) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("freq", ["H", "12H", "2D", "W"]) @pytest.mark.parametrize("kind", [None, "period", "timestamp"]) @pytest.mark.parametrize("kwargs", [{"on": "date"}, {"level": "d"}]) def test_selection(self, index, freq, kind, kwargs): # This is a bug, these should be implemented # GH 14008 rng = np.arange(len(index), dtype=np.int64) df = DataFrame( {"date": index, "a": rng}, index=pd.MultiIndex.from_arrays([rng, index], names=["v", "d"]), ) msg = ( "Resampling from level= or on= selection with a PeriodIndex is " r"not currently supported, use \.set_index\(\.\.\.\) to " "explicitly set index" ) with pytest.raises(NotImplementedError, match=msg): df.resample(freq, kind=kind, **kwargs) @pytest.mark.parametrize("month", MONTHS) @pytest.mark.parametrize("meth", ["ffill", "bfill"]) @pytest.mark.parametrize("conv", ["start", "end"]) @pytest.mark.parametrize("targ", ["D", "B", "M"]) def test_annual_upsample_cases( self, targ, conv, meth, month, simple_period_range_series ): ts = simple_period_range_series("1/1/1990", "12/31/1991", freq=f"A-{month}") result = getattr(ts.resample(targ, convention=conv), meth)() expected = result.to_timestamp(targ, how=conv) expected = expected.asfreq(targ, meth).to_period() tm.assert_series_equal(result, expected) def test_basic_downsample(self, simple_period_range_series): ts = simple_period_range_series("1/1/1990", "6/30/1995", freq="M") result = ts.resample("a-dec").mean() expected = ts.groupby(ts.index.year).mean() expected.index = period_range("1/1/1990", "6/30/1995", freq="a-dec") tm.assert_series_equal(result, expected) # this is ok tm.assert_series_equal(ts.resample("a-dec").mean(), result) tm.assert_series_equal(ts.resample("a").mean(), result) @pytest.mark.parametrize( "rule,expected_error_msg", [ ("a-dec", ""), ("q-mar", ""), ("M", ""), ("w-thu", ""), ], ) def test_not_subperiod(self, simple_period_range_series, rule, expected_error_msg): # These are incompatible period rules for resampling ts = simple_period_range_series("1/1/1990", "6/30/1995", freq="w-wed") msg = ( "Frequency cannot be resampled to " f"{expected_error_msg}, as they are not sub or super periods" ) with pytest.raises(IncompatibleFrequency, match=msg): ts.resample(rule).mean() @pytest.mark.parametrize("freq", ["D", "2D"]) def test_basic_upsample(self, freq, simple_period_range_series): ts = simple_period_range_series("1/1/1990", "6/30/1995", freq="M") result = ts.resample("a-dec").mean() resampled = result.resample(freq, convention="end").ffill() expected = result.to_timestamp(freq, how="end") expected = expected.asfreq(freq, "ffill").to_period(freq) tm.assert_series_equal(resampled, expected) def test_upsample_with_limit(self): rng = period_range("1/1/2000", periods=5, freq="A") ts = Series(np.random.randn(len(rng)), rng) result = ts.resample("M", convention="end").ffill(limit=2) expected = ts.asfreq("M").reindex(result.index, method="ffill", limit=2) tm.assert_series_equal(result, expected) def test_annual_upsample(self, simple_period_range_series): ts = simple_period_range_series("1/1/1990", "12/31/1995", freq="A-DEC") df = DataFrame({"a": ts}) rdf = df.resample("D").ffill() exp = df["a"].resample("D").ffill() tm.assert_series_equal(rdf["a"], exp) rng = period_range("2000", "2003", freq="A-DEC") ts = Series([1, 2, 3, 4], index=rng) result = ts.resample("M").ffill() ex_index = period_range("2000-01", "2003-12", freq="M") expected = ts.asfreq("M", how="start").reindex(ex_index, method="ffill") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("month", MONTHS) @pytest.mark.parametrize("target", ["D", "B", "M"]) @pytest.mark.parametrize("convention", ["start", "end"]) def test_quarterly_upsample( self, month, target, convention, simple_period_range_series ): freq = f"Q-{month}" ts = simple_period_range_series("1/1/1990", "12/31/1995", freq=freq) result = ts.resample(target, convention=convention).ffill() expected = result.to_timestamp(target, how=convention) expected = expected.asfreq(target, "ffill").to_period() tm.assert_series_equal(result, expected) @pytest.mark.parametrize("target", ["D", "B"]) @pytest.mark.parametrize("convention", ["start", "end"]) def test_monthly_upsample(self, target, convention, simple_period_range_series): ts = simple_period_range_series("1/1/1990", "12/31/1995", freq="M") result = ts.resample(target, convention=convention).ffill() expected = result.to_timestamp(target, how=convention) expected = expected.asfreq(target, "ffill").to_period() tm.assert_series_equal(result, expected) def test_resample_basic(self): # GH3609 s = Series( range(100), index=date_range("20130101", freq="s", periods=100, name="idx"), dtype="float", ) s[10:30] = np.nan index = PeriodIndex( [Period("2013-01-01 00:00", "T"), Period("2013-01-01 00:01", "T")], name="idx", ) expected = Series([34.5, 79.5], index=index) result = s.to_period().resample("T", kind="period").mean() tm.assert_series_equal(result, expected) result2 = s.resample("T", kind="period").mean() tm.assert_series_equal(result2, expected) @pytest.mark.parametrize( "freq,expected_vals", [("M", [31, 29, 31, 9]), ("2M", [31 + 29, 31 + 9])] ) def test_resample_count(self, freq, expected_vals): # GH12774 series = Series(1, index=pd.period_range(start="2000", periods=100)) result = series.resample(freq).count() expected_index = pd.period_range( start="2000", freq=freq, periods=len(expected_vals) ) expected = Series(expected_vals, index=expected_index) tm.assert_series_equal(result, expected) def test_resample_same_freq(self, resample_method): # GH12770 series = Series( range(3), index=pd.period_range(start="2000", periods=3, freq="M") ) expected = series result = getattr(series.resample("M"), resample_method)() tm.assert_series_equal(result, expected) def test_resample_incompat_freq(self): msg = ( "Frequency cannot be resampled to , " "as they are not sub or super periods" ) with pytest.raises(IncompatibleFrequency, match=msg): Series( range(3), index=pd.period_range(start="2000", periods=3, freq="M") ).resample("W").mean() def test_with_local_timezone_pytz(self): # see gh-5430 local_timezone = pytz.timezone("America/Los_Angeles") start = datetime(year=2013, month=11, day=1, hour=0, minute=0, tzinfo=pytz.utc) # 1 day later end = datetime(year=2013, month=11, day=2, hour=0, minute=0, tzinfo=pytz.utc) index = pd.date_range(start, end, freq="H") series = Series(1, index=index) series = series.tz_convert(local_timezone) result = series.resample("D", kind="period").mean() # Create the expected series # Index is moved back a day with the timezone conversion from UTC to # Pacific expected_index = pd.period_range(start=start, end=end, freq="D") - offsets.Day() expected = Series(1, index=expected_index) tm.assert_series_equal(result, expected) def test_resample_with_pytz(self): # GH 13238 s = Series( 2, index=pd.date_range("2017-01-01", periods=48, freq="H", tz="US/Eastern") ) result = s.resample("D").mean() expected = Series( 2, index=pd.DatetimeIndex( ["2017-01-01", "2017-01-02"], tz="US/Eastern", freq="D" ), ) tm.assert_series_equal(result, expected) # Especially assert that the timezone is LMT for pytz assert result.index.tz == pytz.timezone("US/Eastern") def test_with_local_timezone_dateutil(self): # see gh-5430 local_timezone = "dateutil/America/Los_Angeles" start = datetime( year=2013, month=11, day=1, hour=0, minute=0, tzinfo=dateutil.tz.tzutc() ) # 1 day later end = datetime( year=2013, month=11, day=2, hour=0, minute=0, tzinfo=dateutil.tz.tzutc() ) index = pd.date_range(start, end, freq="H", name="idx") series = Series(1, index=index) series = series.tz_convert(local_timezone) result = series.resample("D", kind="period").mean() # Create the expected series # Index is moved back a day with the timezone conversion from UTC to # Pacific expected_index = ( pd.period_range(start=start, end=end, freq="D", name="idx") - offsets.Day() ) expected = Series(1, index=expected_index) tm.assert_series_equal(result, expected) def test_resample_nonexistent_time_bin_edge(self): # GH 19375 index = date_range("2017-03-12", "2017-03-12 1:45:00", freq="15T") s = Series(np.zeros(len(index)), index=index) expected = s.tz_localize("US/Pacific") expected.index = pd.DatetimeIndex(expected.index, freq="900S") result = expected.resample("900S").mean() tm.assert_series_equal(result, expected) # GH 23742 index = date_range(start="2017-10-10", end="2017-10-20", freq="1H") index = index.tz_localize("UTC").tz_convert("America/Sao_Paulo") df = DataFrame(data=list(range(len(index))), index=index) result = df.groupby(pd.Grouper(freq="1D")).count() expected = date_range( start="2017-10-09", end="2017-10-20", freq="D", tz="America/Sao_Paulo", nonexistent="shift_forward", closed="left", ) tm.assert_index_equal(result.index, expected) def test_resample_ambiguous_time_bin_edge(self): # GH 10117 idx = pd.date_range( "2014-10-25 22:00:00", "2014-10-26 00:30:00", freq="30T", tz="Europe/London" ) expected = Series(np.zeros(len(idx)), index=idx) result = expected.resample("30T").mean() tm.assert_series_equal(result, expected) def test_fill_method_and_how_upsample(self): # GH2073 s = Series( np.arange(9, dtype="int64"), index=date_range("2010-01-01", periods=9, freq="Q"), ) last = s.resample("M").ffill() both = s.resample("M").ffill().resample("M").last().astype("int64") tm.assert_series_equal(last, both) @pytest.mark.parametrize("day", DAYS) @pytest.mark.parametrize("target", ["D", "B"]) @pytest.mark.parametrize("convention", ["start", "end"]) def test_weekly_upsample(self, day, target, convention, simple_period_range_series): freq = f"W-{day}" ts = simple_period_range_series("1/1/1990", "12/31/1995", freq=freq) result = ts.resample(target, convention=convention).ffill() expected = result.to_timestamp(target, how=convention) expected = expected.asfreq(target, "ffill").to_period() tm.assert_series_equal(result, expected) def test_resample_to_timestamps(self, simple_period_range_series): ts = simple_period_range_series("1/1/1990", "12/31/1995", freq="M") result = ts.resample("A-DEC", kind="timestamp").mean() expected = ts.to_timestamp(how="start").resample("A-DEC").mean() tm.assert_series_equal(result, expected) def test_resample_to_quarterly(self, simple_period_range_series): for month in MONTHS: ts = simple_period_range_series("1990", "1992", freq=f"A-{month}") quar_ts = ts.resample(f"Q-{month}").ffill() stamps = ts.to_timestamp("D", how="start") qdates = period_range( ts.index[0].asfreq("D", "start"), ts.index[-1].asfreq("D", "end"), freq=f"Q-{month}", ) expected = stamps.reindex(qdates.to_timestamp("D", "s"), method="ffill") expected.index = qdates tm.assert_series_equal(quar_ts, expected) # conforms, but different month ts = simple_period_range_series("1990", "1992", freq="A-JUN") for how in ["start", "end"]: result = ts.resample("Q-MAR", convention=how).ffill() expected = ts.asfreq("Q-MAR", how=how) expected = expected.reindex(result.index, method="ffill") # .to_timestamp('D') # expected = expected.resample('Q-MAR').ffill() tm.assert_series_equal(result, expected) def test_resample_fill_missing(self): rng = PeriodIndex([2000, 2005, 2007, 2009], freq="A") s = Series(np.random.randn(4), index=rng) stamps = s.to_timestamp() filled = s.resample("A").ffill() expected = stamps.resample("A").ffill().to_period("A") tm.assert_series_equal(filled, expected) def test_cant_fill_missing_dups(self): rng = PeriodIndex([2000, 2005, 2005, 2007, 2007], freq="A") s = Series(np.random.randn(5), index=rng) msg = "Reindexing only valid with uniquely valued Index objects" with pytest.raises(InvalidIndexError, match=msg): s.resample("A").ffill() @pytest.mark.parametrize("freq", ["5min"]) @pytest.mark.parametrize("kind", ["period", None, "timestamp"]) def test_resample_5minute(self, freq, kind): rng = period_range("1/1/2000", "1/5/2000", freq="T") ts = Series(np.random.randn(len(rng)), index=rng) expected = ts.to_timestamp().resample(freq).mean() if kind != "timestamp": expected = expected.to_period(freq) result = ts.resample(freq, kind=kind).mean() tm.assert_series_equal(result, expected) def test_upsample_daily_business_daily(self, simple_period_range_series): ts = simple_period_range_series("1/1/2000", "2/1/2000", freq="B") result = ts.resample("D").asfreq() expected = ts.asfreq("D").reindex(period_range("1/3/2000", "2/1/2000")) tm.assert_series_equal(result, expected) ts = simple_period_range_series("1/1/2000", "2/1/2000") result = ts.resample("H", convention="s").asfreq() exp_rng = period_range("1/1/2000", "2/1/2000 23:00", freq="H") expected = ts.asfreq("H", how="s").reindex(exp_rng) tm.assert_series_equal(result, expected) def test_resample_irregular_sparse(self): dr = date_range(start="1/1/2012", freq="5min", periods=1000) s = Series(np.array(100), index=dr) # subset the data. subset = s[:"2012-01-04 06:55"] result = subset.resample("10min").apply(len) expected = s.resample("10min").apply(len).loc[result.index] tm.assert_series_equal(result, expected) def test_resample_weekly_all_na(self): rng = date_range("1/1/2000", periods=10, freq="W-WED") ts = Series(np.random.randn(len(rng)), index=rng) result = ts.resample("W-THU").asfreq() assert result.isna().all() result = ts.resample("W-THU").asfreq().ffill()[:-1] expected = ts.asfreq("W-THU").ffill() tm.assert_series_equal(result, expected) def test_resample_tz_localized(self): dr = date_range(start="2012-4-13", end="2012-5-1") ts = Series(range(len(dr)), index=dr) ts_utc = ts.tz_localize("UTC") ts_local = ts_utc.tz_convert("America/Los_Angeles") result = ts_local.resample("W").mean() ts_local_naive = ts_local.copy() ts_local_naive.index = [ x.replace(tzinfo=None) for x in ts_local_naive.index.to_pydatetime() ] exp = ts_local_naive.resample("W").mean().tz_localize("America/Los_Angeles") exp.index = pd.DatetimeIndex(exp.index, freq="W") tm.assert_series_equal(result, exp) # it works result = ts_local.resample("D").mean() # #2245 idx = date_range( "2001-09-20 15:59", "2001-09-20 16:00", freq="T", tz="Australia/Sydney" ) s = Series([1, 2], index=idx) result = s.resample("D", closed="right", label="right").mean() ex_index = date_range("2001-09-21", periods=1, freq="D", tz="Australia/Sydney") expected = Series([1.5], index=ex_index) tm.assert_series_equal(result, expected) # for good measure result = s.resample("D", kind="period").mean() ex_index = period_range("2001-09-20", periods=1, freq="D") expected = Series([1.5], index=ex_index) tm.assert_series_equal(result, expected) # GH 6397 # comparing an offset that doesn't propagate tz's rng = date_range("1/1/2011", periods=20000, freq="H") rng = rng.tz_localize("EST") ts = DataFrame(index=rng) ts["first"] = np.random.randn(len(rng)) ts["second"] = np.cumsum(np.random.randn(len(rng))) expected = DataFrame( { "first": ts.resample("A").sum()["first"], "second": ts.resample("A").mean()["second"], }, columns=["first", "second"], ) result = ( ts.resample("A") .agg({"first": np.sum, "second": np.mean}) .reindex(columns=["first", "second"]) ) tm.assert_frame_equal(result, expected) def test_closed_left_corner(self): # #1465 s = Series( np.random.randn(21), index=date_range(start="1/1/2012 9:30", freq="1min", periods=21), ) s[0] = np.nan result = s.resample("10min", closed="left", label="right").mean() exp = s[1:].resample("10min", closed="left", label="right").mean() tm.assert_series_equal(result, exp) result = s.resample("10min", closed="left", label="left").mean() exp = s[1:].resample("10min", closed="left", label="left").mean() ex_index = date_range(start="1/1/2012 9:30", freq="10min", periods=3) tm.assert_index_equal(result.index, ex_index) tm.assert_series_equal(result, exp) def test_quarterly_resampling(self): rng = period_range("2000Q1", periods=10, freq="Q-DEC") ts = Series(np.arange(10), index=rng) result = ts.resample("A").mean() exp = ts.to_timestamp().resample("A").mean().to_period() tm.assert_series_equal(result, exp) def test_resample_weekly_bug_1726(self): # 8/6/12 is a Monday ind = date_range(start="8/6/2012", end="8/26/2012", freq="D") n = len(ind) data = [[x] * 5 for x in range(n)] df = DataFrame(data, columns=["open", "high", "low", "close", "vol"], index=ind) # it works! df.resample("W-MON", closed="left", label="left").first() def test_resample_with_dst_time_change(self): # GH 15549 index = ( pd.DatetimeIndex([1457537600000000000, 1458059600000000000]) .tz_localize("UTC") .tz_convert("America/Chicago") ) df = DataFrame([1, 2], index=index) result = df.resample("12h", closed="right", label="right").last().ffill() expected_index_values = [ "2016-03-09 12:00:00-06:00", "2016-03-10 00:00:00-06:00", "2016-03-10 12:00:00-06:00", "2016-03-11 00:00:00-06:00", "2016-03-11 12:00:00-06:00", "2016-03-12 00:00:00-06:00", "2016-03-12 12:00:00-06:00", "2016-03-13 00:00:00-06:00", "2016-03-13 13:00:00-05:00", "2016-03-14 01:00:00-05:00", "2016-03-14 13:00:00-05:00", "2016-03-15 01:00:00-05:00", "2016-03-15 13:00:00-05:00", ] index = pd.to_datetime(expected_index_values, utc=True).tz_convert( "America/Chicago" ) index = pd.DatetimeIndex(index, freq="12h") expected = DataFrame( [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0], index=index, ) tm.assert_frame_equal(result, expected) def test_resample_bms_2752(self): # GH2753 foo = Series(index=pd.bdate_range("20000101", "20000201"), dtype=np.float64) res1 = foo.resample("BMS").mean() res2 = foo.resample("BMS").mean().resample("B").mean() assert res1.index[0] == Timestamp("20000103") assert res1.index[0] == res2.index[0] # def test_monthly_convention_span(self): # rng = period_range('2000-01', periods=3, freq='M') # ts = Series(np.arange(3), index=rng) # # hacky way to get same thing # exp_index = period_range('2000-01-01', '2000-03-31', freq='D') # expected = ts.asfreq('D', how='end').reindex(exp_index) # expected = expected.fillna(method='bfill') # result = ts.resample('D', convention='span').mean() # tm.assert_series_equal(result, expected) def test_default_right_closed_label(self): end_freq = ["D", "Q", "M", "D"] end_types = ["M", "A", "Q", "W"] for from_freq, to_freq in zip(end_freq, end_types): idx = date_range(start="8/15/2012", periods=100, freq=from_freq) df = DataFrame(np.random.randn(len(idx), 2), idx) resampled = df.resample(to_freq).mean() tm.assert_frame_equal( resampled, df.resample(to_freq, closed="right", label="right").mean() ) def test_default_left_closed_label(self): others = ["MS", "AS", "QS", "D", "H"] others_freq = ["D", "Q", "M", "H", "T"] for from_freq, to_freq in zip(others_freq, others): idx = date_range(start="8/15/2012", periods=100, freq=from_freq) df = DataFrame(np.random.randn(len(idx), 2), idx) resampled = df.resample(to_freq).mean() tm.assert_frame_equal( resampled, df.resample(to_freq, closed="left", label="left").mean() ) def test_all_values_single_bin(self): # 2070 index = period_range(start="2012-01-01", end="2012-12-31", freq="M") s = Series(np.random.randn(len(index)), index=index) result = s.resample("A").mean() tm.assert_almost_equal(result[0], s.mean()) def test_evenly_divisible_with_no_extra_bins(self): # 4076 # when the frequency is evenly divisible, sometimes extra bins df = DataFrame(np.random.randn(9, 3), index=date_range("2000-1-1", periods=9)) result = df.resample("5D").mean() expected = pd.concat([df.iloc[0:5].mean(), df.iloc[5:].mean()], axis=1).T expected.index = pd.DatetimeIndex( [Timestamp("2000-1-1"), Timestamp("2000-1-6")], freq="5D" ) tm.assert_frame_equal(result, expected) index = date_range(start="2001-5-4", periods=28) df = DataFrame( [ { "REST_KEY": 1, "DLY_TRN_QT": 80, "DLY_SLS_AMT": 90, "COOP_DLY_TRN_QT": 30, "COOP_DLY_SLS_AMT": 20, } ] * 28 + [ { "REST_KEY": 2, "DLY_TRN_QT": 70, "DLY_SLS_AMT": 10, "COOP_DLY_TRN_QT": 50, "COOP_DLY_SLS_AMT": 20, } ] * 28, index=index.append(index), ).sort_index() index = date_range("2001-5-4", periods=4, freq="7D") expected = DataFrame( [ { "REST_KEY": 14, "DLY_TRN_QT": 14, "DLY_SLS_AMT": 14, "COOP_DLY_TRN_QT": 14, "COOP_DLY_SLS_AMT": 14, } ] * 4, index=index, ) result = df.resample("7D").count() tm.assert_frame_equal(result, expected) expected = DataFrame( [ { "REST_KEY": 21, "DLY_TRN_QT": 1050, "DLY_SLS_AMT": 700, "COOP_DLY_TRN_QT": 560, "COOP_DLY_SLS_AMT": 280, } ] * 4, index=index, ) result = df.resample("7D").sum() tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("freq, period_mult", [("H", 24), ("12H", 2)]) @pytest.mark.parametrize("kind", [None, "period"]) def test_upsampling_ohlc(self, freq, period_mult, kind): # GH 13083 pi = period_range(start="2000", freq="D", periods=10) s = Series(range(len(pi)), index=pi) expected = s.to_timestamp().resample(freq).ohlc().to_period(freq) # timestamp-based resampling doesn't include all sub-periods # of the last original period, so extend accordingly: new_index = period_range(start="2000", freq=freq, periods=period_mult * len(pi)) expected = expected.reindex(new_index) result = s.resample(freq, kind=kind).ohlc() tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "periods, values", [ ( [ pd.NaT, "1970-01-01 00:00:00", pd.NaT, "1970-01-01 00:00:02", "1970-01-01 00:00:03", ], [2, 3, 5, 7, 11], ), ( [ pd.NaT, pd.NaT, "1970-01-01 00:00:00", pd.NaT, pd.NaT, pd.NaT, "1970-01-01 00:00:02", "1970-01-01 00:00:03", pd.NaT, pd.NaT, ], [1, 2, 3, 5, 6, 8, 7, 11, 12, 13], ), ], ) @pytest.mark.parametrize( "freq, expected_values", [ ("1s", [3, np.NaN, 7, 11]), ("2s", [3, int((7 + 11) / 2)]), ("3s", [int((3 + 7) / 2), 11]), ], ) def test_resample_with_nat(self, periods, values, freq, expected_values): # GH 13224 index = PeriodIndex(periods, freq="S") frame = DataFrame(values, index=index) expected_index = period_range( "1970-01-01 00:00:00", periods=len(expected_values), freq=freq ) expected = DataFrame(expected_values, index=expected_index) result = frame.resample(freq).mean() tm.assert_frame_equal(result, expected) def test_resample_with_only_nat(self): # GH 13224 pi = PeriodIndex([pd.NaT] * 3, freq="S") frame = DataFrame([2, 3, 5], index=pi) expected_index = PeriodIndex(data=[], freq=pi.freq) expected = DataFrame(index=expected_index) result = frame.resample("1s").mean() tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "start,end,start_freq,end_freq,offset", [ ("19910905", "19910909 03:00", "H", "24H", "10H"), ("19910905", "19910909 12:00", "H", "24H", "10H"), ("19910905", "19910909 23:00", "H", "24H", "10H"), ("19910905 10:00", "19910909", "H", "24H", "10H"), ("19910905 10:00", "19910909 10:00", "H", "24H", "10H"), ("19910905", "19910909 10:00", "H", "24H", "10H"), ("19910905 12:00", "19910909", "H", "24H", "10H"), ("19910905 12:00", "19910909 03:00", "H", "24H", "10H"), ("19910905 12:00", "19910909 12:00", "H", "24H", "10H"), ("19910905 12:00", "19910909 12:00", "H", "24H", "34H"), ("19910905 12:00", "19910909 12:00", "H", "17H", "10H"), ("19910905 12:00", "19910909 12:00", "H", "17H", "3H"), ("19910905 12:00", "19910909 1:00", "H", "M", "3H"), ("19910905", "19910913 06:00", "2H", "24H", "10H"), ("19910905", "19910905 01:39", "Min", "5Min", "3Min"), ("19910905", "19910905 03:18", "2Min", "5Min", "3Min"), ], ) def test_resample_with_offset(self, start, end, start_freq, end_freq, offset): # GH 23882 & 31809 s = Series(0, index=pd.period_range(start, end, freq=start_freq)) s = s + np.arange(len(s)) result = s.resample(end_freq, offset=offset).mean() result = result.to_timestamp(end_freq) expected = s.to_timestamp().resample(end_freq, offset=offset).mean() if end_freq == "M": # TODO: is non-tick the relevant characteristic? (GH 33815) expected.index = expected.index._with_freq(None) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "first,last,freq,exp_first,exp_last", [ ("19910905", "19920406", "D", "19910905", "19920406"), ("19910905 00:00", "19920406 06:00", "D", "19910905", "19920406"), ( "19910905 06:00", "19920406 06:00", "H", "19910905 06:00", "19920406 06:00", ), ("19910906", "19920406", "M", "1991-09", "1992-04"), ("19910831", "19920430", "M", "1991-08", "1992-04"), ("1991-08", "1992-04", "M", "1991-08", "1992-04"), ], ) def test_get_period_range_edges(self, first, last, freq, exp_first, exp_last): first = Period(first) last = Period(last) exp_first = Period(exp_first, freq=freq) exp_last = Period(exp_last, freq=freq) freq = pd.tseries.frequencies.to_offset(freq) result = _get_period_range_edges(first, last, freq) expected = (exp_first, exp_last) assert result == expected def test_sum_min_count(self): # GH 19974 index = pd.date_range(start="2018", freq="M", periods=6) data = np.ones(6) data[3:6] = np.nan s = Series(data, index).to_period() result = s.resample("Q").sum(min_count=1) expected = Series( [3.0, np.nan], index=PeriodIndex(["2018Q1", "2018Q2"], freq="Q-DEC") ) tm.assert_series_equal(result, expected)