import numpy as np import pytest from numpy.testing import assert_allclose, assert_array_equal from sklearn.datasets import make_classification, make_regression from sklearn.datasets import make_low_rank_matrix from sklearn.preprocessing import KBinsDiscretizer, MinMaxScaler, OneHotEncoder from sklearn.model_selection import train_test_split, cross_val_score from sklearn.base import clone, BaseEstimator, TransformerMixin from sklearn.base import is_regressor from sklearn.pipeline import make_pipeline from sklearn.metrics import mean_poisson_deviance from sklearn.dummy import DummyRegressor from sklearn.exceptions import NotFittedError from sklearn.compose import make_column_transformer # To use this experimental feature, we need to explicitly ask for it: from sklearn.experimental import enable_hist_gradient_boosting # noqa from sklearn.ensemble import HistGradientBoostingRegressor from sklearn.ensemble import HistGradientBoostingClassifier from sklearn.ensemble._hist_gradient_boosting.loss import _LOSSES from sklearn.ensemble._hist_gradient_boosting.loss import LeastSquares from sklearn.ensemble._hist_gradient_boosting.loss import BinaryCrossEntropy from sklearn.ensemble._hist_gradient_boosting.grower import TreeGrower from sklearn.ensemble._hist_gradient_boosting.binning import _BinMapper from sklearn.utils import shuffle X_classification, y_classification = make_classification(random_state=0) X_regression, y_regression = make_regression(random_state=0) X_multi_classification, y_multi_classification = make_classification( n_classes=3, n_informative=3, random_state=0 ) def _make_dumb_dataset(n_samples): """Make a dumb dataset to test early stopping.""" rng = np.random.RandomState(42) X_dumb = rng.randn(n_samples, 1) y_dumb = (X_dumb[:, 0] > 0).astype('int64') return X_dumb, y_dumb @pytest.mark.parametrize('GradientBoosting, X, y', [ (HistGradientBoostingClassifier, X_classification, y_classification), (HistGradientBoostingRegressor, X_regression, y_regression) ]) @pytest.mark.parametrize( 'params, err_msg', [({'loss': 'blah'}, 'Loss blah is not supported for'), ({'learning_rate': 0}, 'learning_rate=0 must be strictly positive'), ({'learning_rate': -1}, 'learning_rate=-1 must be strictly positive'), ({'max_iter': 0}, 'max_iter=0 must not be smaller than 1'), ({'max_leaf_nodes': 0}, 'max_leaf_nodes=0 should not be smaller than 2'), ({'max_leaf_nodes': 1}, 'max_leaf_nodes=1 should not be smaller than 2'), ({'max_depth': 0}, 'max_depth=0 should not be smaller than 1'), ({'min_samples_leaf': 0}, 'min_samples_leaf=0 should not be smaller'), ({'l2_regularization': -1}, 'l2_regularization=-1 must be positive'), ({'max_bins': 1}, 'max_bins=1 should be no smaller than 2 and no larger'), ({'max_bins': 256}, 'max_bins=256 should be no smaller than 2 and no'), ({'n_iter_no_change': -1}, 'n_iter_no_change=-1 must be positive'), ({'validation_fraction': -1}, 'validation_fraction=-1 must be strictly'), ({'validation_fraction': 0}, 'validation_fraction=0 must be strictly'), ({'tol': -1}, 'tol=-1 must not be smaller than 0')] ) def test_init_parameters_validation(GradientBoosting, X, y, params, err_msg): with pytest.raises(ValueError, match=err_msg): GradientBoosting(**params).fit(X, y) def test_invalid_classification_loss(): binary_clf = HistGradientBoostingClassifier(loss="binary_crossentropy") err_msg = ("loss='binary_crossentropy' is not defined for multiclass " "classification with n_classes=3, use " "loss='categorical_crossentropy' instead") with pytest.raises(ValueError, match=err_msg): binary_clf.fit(np.zeros(shape=(3, 2)), np.arange(3)) @pytest.mark.parametrize( 'scoring, validation_fraction, early_stopping, n_iter_no_change, tol', [ ('neg_mean_squared_error', .1, True, 5, 1e-7), # use scorer ('neg_mean_squared_error', None, True, 5, 1e-1), # use scorer on train (None, .1, True, 5, 1e-7), # same with default scorer (None, None, True, 5, 1e-1), ('loss', .1, True, 5, 1e-7), # use loss ('loss', None, True, 5, 1e-1), # use loss on training data (None, None, False, 5, None), # no early stopping ]) def test_early_stopping_regression(scoring, validation_fraction, early_stopping, n_iter_no_change, tol): max_iter = 200 X, y = make_regression(n_samples=50, random_state=0) gb = HistGradientBoostingRegressor( verbose=1, # just for coverage min_samples_leaf=5, # easier to overfit fast scoring=scoring, tol=tol, early_stopping=early_stopping, validation_fraction=validation_fraction, max_iter=max_iter, n_iter_no_change=n_iter_no_change, random_state=0 ) gb.fit(X, y) if early_stopping: assert n_iter_no_change <= gb.n_iter_ < max_iter else: assert gb.n_iter_ == max_iter @pytest.mark.parametrize('data', ( make_classification(n_samples=30, random_state=0), make_classification(n_samples=30, n_classes=3, n_clusters_per_class=1, random_state=0) )) @pytest.mark.parametrize( 'scoring, validation_fraction, early_stopping, n_iter_no_change, tol', [ ('accuracy', .1, True, 5, 1e-7), # use scorer ('accuracy', None, True, 5, 1e-1), # use scorer on training data (None, .1, True, 5, 1e-7), # same with default scorer (None, None, True, 5, 1e-1), ('loss', .1, True, 5, 1e-7), # use loss ('loss', None, True, 5, 1e-1), # use loss on training data (None, None, False, 5, None), # no early stopping ]) def test_early_stopping_classification(data, scoring, validation_fraction, early_stopping, n_iter_no_change, tol): max_iter = 50 X, y = data gb = HistGradientBoostingClassifier( verbose=1, # just for coverage min_samples_leaf=5, # easier to overfit fast scoring=scoring, tol=tol, early_stopping=early_stopping, validation_fraction=validation_fraction, max_iter=max_iter, n_iter_no_change=n_iter_no_change, random_state=0 ) gb.fit(X, y) if early_stopping is True: assert n_iter_no_change <= gb.n_iter_ < max_iter else: assert gb.n_iter_ == max_iter @pytest.mark.parametrize('GradientBoosting, X, y', [ (HistGradientBoostingClassifier, *_make_dumb_dataset(10000)), (HistGradientBoostingClassifier, *_make_dumb_dataset(10001)), (HistGradientBoostingRegressor, *_make_dumb_dataset(10000)), (HistGradientBoostingRegressor, *_make_dumb_dataset(10001)) ]) def test_early_stopping_default(GradientBoosting, X, y): # Test that early stopping is enabled by default if and only if there # are more than 10000 samples gb = GradientBoosting(max_iter=10, n_iter_no_change=2, tol=1e-1) gb.fit(X, y) if X.shape[0] > 10000: assert gb.n_iter_ < gb.max_iter else: assert gb.n_iter_ == gb.max_iter @pytest.mark.parametrize( 'scores, n_iter_no_change, tol, stopping', [ ([], 1, 0.001, False), # not enough iterations ([1, 1, 1], 5, 0.001, False), # not enough iterations ([1, 1, 1, 1, 1], 5, 0.001, False), # not enough iterations ([1, 2, 3, 4, 5, 6], 5, 0.001, False), # significant improvement ([1, 2, 3, 4, 5, 6], 5, 0., False), # significant improvement ([1, 2, 3, 4, 5, 6], 5, 0.999, False), # significant improvement ([1, 2, 3, 4, 5, 6], 5, 5 - 1e-5, False), # significant improvement ([1] * 6, 5, 0., True), # no significant improvement ([1] * 6, 5, 0.001, True), # no significant improvement ([1] * 6, 5, 5, True), # no significant improvement ] ) def test_should_stop(scores, n_iter_no_change, tol, stopping): gbdt = HistGradientBoostingClassifier( n_iter_no_change=n_iter_no_change, tol=tol ) assert gbdt._should_stop(scores) == stopping def test_least_absolute_deviation(): # For coverage only. X, y = make_regression(n_samples=500, random_state=0) gbdt = HistGradientBoostingRegressor(loss='least_absolute_deviation', random_state=0) gbdt.fit(X, y) assert gbdt.score(X, y) > .9 def test_least_absolute_deviation_sample_weight(): # non regression test for issue #19400 # make sure no error is thrown during fit of # HistGradientBoostingRegressor with least_absolute_deviation loss function # and passing sample_weight rng = np.random.RandomState(0) n_samples = 100 X = rng.uniform(-1, 1, size=(n_samples, 2)) y = rng.uniform(-1, 1, size=n_samples) sample_weight = rng.uniform(0, 1, size=n_samples) gbdt = HistGradientBoostingRegressor(loss='least_absolute_deviation') gbdt.fit(X, y, sample_weight=sample_weight) @pytest.mark.parametrize('y', [([1., -2., 0.]), ([0., 0., 0.])]) def test_poisson_y_positive(y): # Test that ValueError is raised if either one y_i < 0 or sum(y_i) <= 0. err_msg = r"loss='poisson' requires non-negative y and sum\(y\) > 0." gbdt = HistGradientBoostingRegressor(loss='poisson', random_state=0) with pytest.raises(ValueError, match=err_msg): gbdt.fit(np.zeros(shape=(len(y), 1)), y) def test_poisson(): # For Poisson distributed target, Poisson loss should give better results # than least squares measured in Poisson deviance as metric. rng = np.random.RandomState(42) n_train, n_test, n_features = 500, 100, 100 X = make_low_rank_matrix(n_samples=n_train+n_test, n_features=n_features, random_state=rng) # We create a log-linear Poisson model and downscale coef as it will get # exponentiated. coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0) y = rng.poisson(lam=np.exp(X @ coef)) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=n_test, random_state=rng) gbdt_pois = HistGradientBoostingRegressor(loss='poisson', random_state=rng) gbdt_ls = HistGradientBoostingRegressor(loss='least_squares', random_state=rng) gbdt_pois.fit(X_train, y_train) gbdt_ls.fit(X_train, y_train) dummy = DummyRegressor(strategy="mean").fit(X_train, y_train) for X, y in [(X_train, y_train), (X_test, y_test)]: metric_pois = mean_poisson_deviance(y, gbdt_pois.predict(X)) # least_squares might produce non-positive predictions => clip metric_ls = mean_poisson_deviance(y, np.clip(gbdt_ls.predict(X), 1e-15, None)) metric_dummy = mean_poisson_deviance(y, dummy.predict(X)) assert metric_pois < metric_ls assert metric_pois < metric_dummy def test_binning_train_validation_are_separated(): # Make sure training and validation data are binned separately. # See issue 13926 rng = np.random.RandomState(0) validation_fraction = .2 gb = HistGradientBoostingClassifier( early_stopping=True, validation_fraction=validation_fraction, random_state=rng ) gb.fit(X_classification, y_classification) mapper_training_data = gb._bin_mapper # Note that since the data is small there is no subsampling and the # random_state doesn't matter mapper_whole_data = _BinMapper(random_state=0) mapper_whole_data.fit(X_classification) n_samples = X_classification.shape[0] assert np.all(mapper_training_data.n_bins_non_missing_ == int((1 - validation_fraction) * n_samples)) assert np.all(mapper_training_data.n_bins_non_missing_ != mapper_whole_data.n_bins_non_missing_) def test_missing_values_trivial(): # sanity check for missing values support. With only one feature and # y == isnan(X), the gbdt is supposed to reach perfect accuracy on the # training set. n_samples = 100 n_features = 1 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) mask = rng.binomial(1, .5, size=X.shape).astype(bool) X[mask] = np.nan y = mask.ravel() gb = HistGradientBoostingClassifier() gb.fit(X, y) assert gb.score(X, y) == pytest.approx(1) @pytest.mark.parametrize('problem', ('classification', 'regression')) @pytest.mark.parametrize( 'missing_proportion, expected_min_score_classification, ' 'expected_min_score_regression', [ (.1, .97, .89), (.2, .93, .81), (.5, .79, .52)]) def test_missing_values_resilience(problem, missing_proportion, expected_min_score_classification, expected_min_score_regression): # Make sure the estimators can deal with missing values and still yield # decent predictions rng = np.random.RandomState(0) n_samples = 1000 n_features = 2 if problem == 'regression': X, y = make_regression(n_samples=n_samples, n_features=n_features, n_informative=n_features, random_state=rng) gb = HistGradientBoostingRegressor() expected_min_score = expected_min_score_regression else: X, y = make_classification(n_samples=n_samples, n_features=n_features, n_informative=n_features, n_redundant=0, n_repeated=0, random_state=rng) gb = HistGradientBoostingClassifier() expected_min_score = expected_min_score_classification mask = rng.binomial(1, missing_proportion, size=X.shape).astype(bool) X[mask] = np.nan gb.fit(X, y) assert gb.score(X, y) > expected_min_score @pytest.mark.parametrize('data', [ make_classification(random_state=0, n_classes=2), make_classification(random_state=0, n_classes=3, n_informative=3) ], ids=['binary_crossentropy', 'categorical_crossentropy']) def test_zero_division_hessians(data): # non regression test for issue #14018 # make sure we avoid zero division errors when computing the leaves values. # If the learning rate is too high, the raw predictions are bad and will # saturate the softmax (or sigmoid in binary classif). This leads to # probabilities being exactly 0 or 1, gradients being constant, and # hessians being zero. X, y = data gb = HistGradientBoostingClassifier(learning_rate=100, max_iter=10) gb.fit(X, y) def test_small_trainset(): # Make sure that the small trainset is stratified and has the expected # length (10k samples) n_samples = 20000 original_distrib = {0: 0.1, 1: 0.2, 2: 0.3, 3: 0.4} rng = np.random.RandomState(42) X = rng.randn(n_samples).reshape(n_samples, 1) y = [[class_] * int(prop * n_samples) for (class_, prop) in original_distrib.items()] y = shuffle(np.concatenate(y)) gb = HistGradientBoostingClassifier() # Compute the small training set X_small, y_small, _ = gb._get_small_trainset(X, y, seed=42, sample_weight_train=None) # Compute the class distribution in the small training set unique, counts = np.unique(y_small, return_counts=True) small_distrib = {class_: count / 10000 for (class_, count) in zip(unique, counts)} # Test that the small training set has the expected length assert X_small.shape[0] == 10000 assert y_small.shape[0] == 10000 # Test that the class distributions in the whole dataset and in the small # training set are identical assert small_distrib == pytest.approx(original_distrib) def test_missing_values_minmax_imputation(): # Compare the buit-in missing value handling of Histogram GBC with an # a-priori missing value imputation strategy that should yield the same # results in terms of decision function. # # Each feature (containing NaNs) is replaced by 2 features: # - one where the nans are replaced by min(feature) - 1 # - one where the nans are replaced by max(feature) + 1 # A split where nans go to the left has an equivalent split in the # first (min) feature, and a split where nans go to the right has an # equivalent split in the second (max) feature. # # Assuming the data is such that there is never a tie to select the best # feature to split on during training, the learned decision trees should be # strictly equivalent (learn a sequence of splits that encode the same # decision function). # # The MinMaxImputer transformer is meant to be a toy implementation of the # "Missing In Attributes" (MIA) missing value handling for decision trees # https://www.sciencedirect.com/science/article/abs/pii/S0167865508000305 # The implementation of MIA as an imputation transformer was suggested by # "Remark 3" in https://arxiv.org/abs/1902.06931 class MinMaxImputer(TransformerMixin, BaseEstimator): def fit(self, X, y=None): mm = MinMaxScaler().fit(X) self.data_min_ = mm.data_min_ self.data_max_ = mm.data_max_ return self def transform(self, X): X_min, X_max = X.copy(), X.copy() for feature_idx in range(X.shape[1]): nan_mask = np.isnan(X[:, feature_idx]) X_min[nan_mask, feature_idx] = self.data_min_[feature_idx] - 1 X_max[nan_mask, feature_idx] = self.data_max_[feature_idx] + 1 return np.concatenate([X_min, X_max], axis=1) def make_missing_value_data(n_samples=int(1e4), seed=0): rng = np.random.RandomState(seed) X, y = make_regression(n_samples=n_samples, n_features=4, random_state=rng) # Pre-bin the data to ensure a deterministic handling by the 2 # strategies and also make it easier to insert np.nan in a structured # way: X = KBinsDiscretizer(n_bins=42, encode="ordinal").fit_transform(X) # First feature has missing values completely at random: rnd_mask = rng.rand(X.shape[0]) > 0.9 X[rnd_mask, 0] = np.nan # Second and third features have missing values for extreme values # (censoring missingness): low_mask = X[:, 1] == 0 X[low_mask, 1] = np.nan high_mask = X[:, 2] == X[:, 2].max() X[high_mask, 2] = np.nan # Make the last feature nan pattern very informative: y_max = np.percentile(y, 70) y_max_mask = y >= y_max y[y_max_mask] = y_max X[y_max_mask, 3] = np.nan # Check that there is at least one missing value in each feature: for feature_idx in range(X.shape[1]): assert any(np.isnan(X[:, feature_idx])) # Let's use a test set to check that the learned decision function is # the same as evaluated on unseen data. Otherwise it could just be the # case that we find two independent ways to overfit the training set. return train_test_split(X, y, random_state=rng) # n_samples need to be large enough to minimize the likelihood of having # several candidate splits with the same gain value in a given tree. X_train, X_test, y_train, y_test = make_missing_value_data( n_samples=int(1e4), seed=0) # Use a small number of leaf nodes and iterations so as to keep # under-fitting models to minimize the likelihood of ties when training the # model. gbm1 = HistGradientBoostingRegressor(max_iter=100, max_leaf_nodes=5, random_state=0) gbm1.fit(X_train, y_train) gbm2 = make_pipeline(MinMaxImputer(), clone(gbm1)) gbm2.fit(X_train, y_train) # Check that the model reach the same score: assert gbm1.score(X_train, y_train) == \ pytest.approx(gbm2.score(X_train, y_train)) assert gbm1.score(X_test, y_test) == \ pytest.approx(gbm2.score(X_test, y_test)) # Check the individual prediction match as a finer grained # decision function check. assert_allclose(gbm1.predict(X_train), gbm2.predict(X_train)) assert_allclose(gbm1.predict(X_test), gbm2.predict(X_test)) def test_infinite_values(): # Basic test for infinite values X = np.array([-np.inf, 0, 1, np.inf]).reshape(-1, 1) y = np.array([0, 0, 1, 1]) gbdt = HistGradientBoostingRegressor(min_samples_leaf=1) gbdt.fit(X, y) np.testing.assert_allclose(gbdt.predict(X), y, atol=1e-4) def test_consistent_lengths(): X = np.array([-np.inf, 0, 1, np.inf]).reshape(-1, 1) y = np.array([0, 0, 1, 1]) sample_weight = np.array([.1, .3, .1]) gbdt = HistGradientBoostingRegressor() with pytest.raises(ValueError, match=r"sample_weight.shape == \(3,\), expected"): gbdt.fit(X, y, sample_weight) with pytest.raises(ValueError, match="Found input variables with inconsistent number"): gbdt.fit(X, y[1:]) def test_infinite_values_missing_values(): # High level test making sure that inf and nan values are properly handled # when both are present. This is similar to # test_split_on_nan_with_infinite_values() in test_grower.py, though we # cannot check the predictions for binned values here. X = np.asarray([-np.inf, 0, 1, np.inf, np.nan]).reshape(-1, 1) y_isnan = np.isnan(X.ravel()) y_isinf = X.ravel() == np.inf stump_clf = HistGradientBoostingClassifier(min_samples_leaf=1, max_iter=1, learning_rate=1, max_depth=2) assert stump_clf.fit(X, y_isinf).score(X, y_isinf) == 1 assert stump_clf.fit(X, y_isnan).score(X, y_isnan) == 1 def test_crossentropy_binary_problem(): # categorical_crossentropy should only be used if there are more than two # classes present. PR #14869 X = [[1], [0]] y = [0, 1] gbrt = HistGradientBoostingClassifier(loss='categorical_crossentropy') with pytest.raises(ValueError, match="'categorical_crossentropy' is not suitable for"): gbrt.fit(X, y) @pytest.mark.parametrize("scoring", [None, 'loss']) def test_string_target_early_stopping(scoring): # Regression tests for #14709 where the targets need to be encoded before # to compute the score rng = np.random.RandomState(42) X = rng.randn(100, 10) y = np.array(['x'] * 50 + ['y'] * 50, dtype=object) gbrt = HistGradientBoostingClassifier(n_iter_no_change=10, scoring=scoring) gbrt.fit(X, y) def test_zero_sample_weights_regression(): # Make sure setting a SW to zero amounts to ignoring the corresponding # sample X = [[1, 0], [1, 0], [1, 0], [0, 1]] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] gb = HistGradientBoostingRegressor(min_samples_leaf=1) gb.fit(X, y, sample_weight=sample_weight) assert gb.predict([[1, 0]])[0] > 0.5 def test_zero_sample_weights_classification(): # Make sure setting a SW to zero amounts to ignoring the corresponding # sample X = [[1, 0], [1, 0], [1, 0], [0, 1]] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] gb = HistGradientBoostingClassifier(loss='binary_crossentropy', min_samples_leaf=1) gb.fit(X, y, sample_weight=sample_weight) assert_array_equal(gb.predict([[1, 0]]), [1]) X = [[1, 0], [1, 0], [1, 0], [0, 1], [1, 1]] y = [0, 0, 1, 0, 2] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1, 1] gb = HistGradientBoostingClassifier(loss='categorical_crossentropy', min_samples_leaf=1) gb.fit(X, y, sample_weight=sample_weight) assert_array_equal(gb.predict([[1, 0]]), [1]) @pytest.mark.parametrize('problem', ( 'regression', 'binary_classification', 'multiclass_classification' )) @pytest.mark.parametrize('duplication', ('half', 'all')) def test_sample_weight_effect(problem, duplication): # High level test to make sure that duplicating a sample is equivalent to # giving it weight of 2. # fails for n_samples > 255 because binning does not take sample weights # into account. Keeping n_samples <= 255 makes # sure only unique values are used so SW have no effect on binning. n_samples = 255 n_features = 2 if problem == 'regression': X, y = make_regression(n_samples=n_samples, n_features=n_features, n_informative=n_features, random_state=0) Klass = HistGradientBoostingRegressor else: n_classes = 2 if problem == 'binary_classification' else 3 X, y = make_classification(n_samples=n_samples, n_features=n_features, n_informative=n_features, n_redundant=0, n_clusters_per_class=1, n_classes=n_classes, random_state=0) Klass = HistGradientBoostingClassifier # This test can't pass if min_samples_leaf > 1 because that would force 2 # samples to be in the same node in est_sw, while these samples would be # free to be separate in est_dup: est_dup would just group together the # duplicated samples. est = Klass(min_samples_leaf=1) # Create dataset with duplicate and corresponding sample weights if duplication == 'half': lim = n_samples // 2 else: lim = n_samples X_dup = np.r_[X, X[:lim]] y_dup = np.r_[y, y[:lim]] sample_weight = np.ones(shape=(n_samples)) sample_weight[:lim] = 2 est_sw = clone(est).fit(X, y, sample_weight=sample_weight) est_dup = clone(est).fit(X_dup, y_dup) # checking raw_predict is stricter than just predict for classification assert np.allclose(est_sw._raw_predict(X_dup), est_dup._raw_predict(X_dup)) @pytest.mark.parametrize('loss_name', ('least_squares', 'least_absolute_deviation')) def test_sum_hessians_are_sample_weight(loss_name): # For losses with constant hessians, the sum_hessians field of the # histograms must be equal to the sum of the sample weight of samples at # the corresponding bin. rng = np.random.RandomState(0) n_samples = 1000 n_features = 2 X, y = make_regression(n_samples=n_samples, n_features=n_features, random_state=rng) bin_mapper = _BinMapper() X_binned = bin_mapper.fit_transform(X) sample_weight = rng.normal(size=n_samples) loss = _LOSSES[loss_name](sample_weight=sample_weight) gradients, hessians = loss.init_gradients_and_hessians( n_samples=n_samples, prediction_dim=1, sample_weight=sample_weight) raw_predictions = rng.normal(size=(1, n_samples)) loss.update_gradients_and_hessians(gradients, hessians, y, raw_predictions, sample_weight) # build sum_sample_weight which contains the sum of the sample weights at # each bin (for each feature). This must be equal to the sum_hessians # field of the corresponding histogram sum_sw = np.zeros(shape=(n_features, bin_mapper.n_bins)) for feature_idx in range(n_features): for sample_idx in range(n_samples): sum_sw[feature_idx, X_binned[sample_idx, feature_idx]] += ( sample_weight[sample_idx]) # Build histogram grower = TreeGrower(X_binned, gradients[0], hessians[0], n_bins=bin_mapper.n_bins) histograms = grower.histogram_builder.compute_histograms_brute( grower.root.sample_indices) for feature_idx in range(n_features): for bin_idx in range(bin_mapper.n_bins): assert histograms[feature_idx, bin_idx]['sum_hessians'] == ( pytest.approx(sum_sw[feature_idx, bin_idx], rel=1e-5)) def test_max_depth_max_leaf_nodes(): # Non regression test for # https://github.com/scikit-learn/scikit-learn/issues/16179 # there was a bug when the max_depth and the max_leaf_nodes criteria were # met at the same time, which would lead to max_leaf_nodes not being # respected. X, y = make_classification(random_state=0) est = HistGradientBoostingClassifier(max_depth=2, max_leaf_nodes=3, max_iter=1).fit(X, y) tree = est._predictors[0][0] assert tree.get_max_depth() == 2 assert tree.get_n_leaf_nodes() == 3 # would be 4 prior to bug fix def test_early_stopping_on_test_set_with_warm_start(): # Non regression test for #16661 where second fit fails with # warm_start=True, early_stopping is on, and no validation set X, y = make_classification(random_state=0) gb = HistGradientBoostingClassifier( max_iter=1, scoring='loss', warm_start=True, early_stopping=True, n_iter_no_change=1, validation_fraction=None) gb.fit(X, y) # does not raise on second call gb.set_params(max_iter=2) gb.fit(X, y) @pytest.mark.parametrize('Est', (HistGradientBoostingClassifier, HistGradientBoostingRegressor)) def test_single_node_trees(Est): # Make sure it's still possible to build single-node trees. In that case # the value of the root is set to 0. That's a correct value: if the tree is # single-node that's because min_gain_to_split is not respected right from # the root, so we don't want the tree to have any impact on the # predictions. X, y = make_classification(random_state=0) y[:] = 1 # constant target will lead to a single root node est = Est(max_iter=20) est.fit(X, y) assert all(len(predictor[0].nodes) == 1 for predictor in est._predictors) assert all(predictor[0].nodes[0]['value'] == 0 for predictor in est._predictors) # Still gives correct predictions thanks to the baseline prediction assert_allclose(est.predict(X), y) @pytest.mark.parametrize('Est, loss, X, y', [ ( HistGradientBoostingClassifier, BinaryCrossEntropy(sample_weight=None), X_classification, y_classification ), ( HistGradientBoostingRegressor, LeastSquares(sample_weight=None), X_regression, y_regression ) ]) def test_custom_loss(Est, loss, X, y): est = Est(loss=loss, max_iter=20) est.fit(X, y) @pytest.mark.parametrize('HistGradientBoosting, X, y', [ (HistGradientBoostingClassifier, X_classification, y_classification), (HistGradientBoostingRegressor, X_regression, y_regression), (HistGradientBoostingClassifier, X_multi_classification, y_multi_classification), ]) def test_staged_predict(HistGradientBoosting, X, y): # Test whether staged predictor eventually gives # the same prediction. X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.5, random_state=0 ) gb = HistGradientBoosting(max_iter=10) # test raise NotFittedError if not fitted with pytest.raises(NotFittedError): next(gb.staged_predict(X_test)) gb.fit(X_train, y_train) # test if the staged predictions of each iteration # are equal to the corresponding predictions of the same estimator # trained from scratch. # this also test limit case when max_iter = 1 method_names = ( ['predict'] if is_regressor(gb) else ['predict', 'predict_proba', 'decision_function'] ) for method_name in method_names: staged_method = getattr(gb, 'staged_' + method_name) staged_predictions = list(staged_method(X_test)) assert len(staged_predictions) == gb.n_iter_ for n_iter, staged_predictions in enumerate(staged_method(X_test), 1): aux = HistGradientBoosting(max_iter=n_iter) aux.fit(X_train, y_train) pred_aux = getattr(aux, method_name)(X_test) assert_allclose(staged_predictions, pred_aux) assert staged_predictions.shape == pred_aux.shape @pytest.mark.parametrize("insert_missing", [False, True]) @pytest.mark.parametrize("Est", (HistGradientBoostingRegressor, HistGradientBoostingClassifier)) @pytest.mark.parametrize("bool_categorical_parameter", [True, False]) def test_unknown_categories_nan(insert_missing, Est, bool_categorical_parameter): # Make sure no error is raised at predict if a category wasn't seen during # fit. We also make sure they're treated as nans. rng = np.random.RandomState(0) n_samples = 1000 f1 = rng.rand(n_samples) f2 = rng.randint(4, size=n_samples) X = np.c_[f1, f2] y = np.zeros(shape=n_samples) y[X[:, 1] % 2 == 0] = 1 if bool_categorical_parameter: categorical_features = [False, True] else: categorical_features = [1] if insert_missing: mask = rng.binomial(1, 0.01, size=X.shape).astype(bool) assert mask.sum() > 0 X[mask] = np.nan est = Est(max_iter=20, categorical_features=categorical_features).fit(X, y) assert_array_equal(est.is_categorical_, [False, True]) # Make sure no error is raised on unknown categories and nans # unknown categories will be treated as nans X_test = np.zeros((10, X.shape[1]), dtype=float) X_test[:5, 1] = 30 X_test[5:, 1] = np.nan assert len(np.unique(est.predict(X_test))) == 1 def test_categorical_encoding_strategies(): # Check native categorical handling vs different encoding strategies. We # make sure that native encoding needs only 1 split to achieve a perfect # prediction on a simple dataset. In contrast, OneHotEncoded data needs # more depth / splits, and treating categories as ordered (just using # OrdinalEncoder) requires even more depth. # dataset with one random continuous feature, and one categorical feature # with values in [0, 5], e.g. from an OrdinalEncoder. # class == 1 iff categorical value in {0, 2, 4} rng = np.random.RandomState(0) n_samples = 10_000 f1 = rng.rand(n_samples) f2 = rng.randint(6, size=n_samples) X = np.c_[f1, f2] y = np.zeros(shape=n_samples) y[X[:, 1] % 2 == 0] = 1 # make sure dataset is balanced so that the baseline_prediction doesn't # influence predictions too much with max_iter = 1 assert 0.49 < y.mean() < 0.51 clf_cat = HistGradientBoostingClassifier( max_iter=1, max_depth=1, categorical_features=[False, True]) # Using native categorical encoding, we get perfect predictions with just # one split assert cross_val_score(clf_cat, X, y).mean() == 1 # quick sanity check for the bitset: 0, 2, 4 = 2**0 + 2**2 + 2**4 = 21 expected_left_bitset = [21, 0, 0, 0, 0, 0, 0, 0] left_bitset = clf_cat.fit(X, y)._predictors[0][0].raw_left_cat_bitsets[0] assert_array_equal(left_bitset, expected_left_bitset) # Treating categories as ordered, we need more depth / more splits to get # the same predictions clf_no_cat = HistGradientBoostingClassifier(max_iter=1, max_depth=4, categorical_features=None) assert cross_val_score(clf_no_cat, X, y).mean() < .9 clf_no_cat.set_params(max_depth=5) assert cross_val_score(clf_no_cat, X, y).mean() == 1 # Using OHEd data, we need less splits than with pure OEd data, but we # still need more splits than with the native categorical splits ct = make_column_transformer((OneHotEncoder(sparse=False), [1]), remainder='passthrough') X_ohe = ct.fit_transform(X) clf_no_cat.set_params(max_depth=2) assert cross_val_score(clf_no_cat, X_ohe, y).mean() < .9 clf_no_cat.set_params(max_depth=3) assert cross_val_score(clf_no_cat, X_ohe, y).mean() == 1 @pytest.mark.parametrize('Est', (HistGradientBoostingClassifier, HistGradientBoostingRegressor)) @pytest.mark.parametrize("categorical_features, monotonic_cst, expected_msg", [ (["hello", "world"], None, ("categorical_features must be an array-like of bools or array-like of " "ints.")), ([0, -1], None, (r"categorical_features set as integer indices must be in " r"\[0, n_features - 1\]")), ([True, True, False, False, True], None, r"categorical_features set as a boolean mask must have shape " r"\(n_features,\)"), ([True, True, False, False], [0, -1, 0, 1], "Categorical features cannot have monotonic constraints"), ]) def test_categorical_spec_errors(Est, categorical_features, monotonic_cst, expected_msg): # Test errors when categories are specified incorrectly n_samples = 100 X, y = make_classification(random_state=0, n_features=4, n_samples=n_samples) rng = np.random.RandomState(0) X[:, 0] = rng.randint(0, 10, size=n_samples) X[:, 1] = rng.randint(0, 10, size=n_samples) est = Est(categorical_features=categorical_features, monotonic_cst=monotonic_cst) with pytest.raises(ValueError, match=expected_msg): est.fit(X, y) @pytest.mark.parametrize('Est', (HistGradientBoostingClassifier, HistGradientBoostingRegressor)) @pytest.mark.parametrize('categorical_features', ([False, False], [])) @pytest.mark.parametrize('as_array', (True, False)) def test_categorical_spec_no_categories(Est, categorical_features, as_array): # Make sure we can properly detect that no categorical features are present # even if the categorical_features parameter is not None X = np.arange(10).reshape(5, 2) y = np.arange(5) if as_array: categorical_features = np.asarray(categorical_features) est = Est(categorical_features=categorical_features).fit(X, y) assert est.is_categorical_ is None @pytest.mark.parametrize('Est', (HistGradientBoostingClassifier, HistGradientBoostingRegressor)) def test_categorical_bad_encoding_errors(Est): # Test errors when categories are encoded incorrectly gb = Est(categorical_features=[True], max_bins=2) X = np.array([[0, 1, 2]]).T y = np.arange(3) msg = ("Categorical feature at index 0 is expected to have a " "cardinality <= 2") with pytest.raises(ValueError, match=msg): gb.fit(X, y) X = np.array([[0, 2]]).T y = np.arange(2) msg = ("Categorical feature at index 0 is expected to be encoded with " "values < 2") with pytest.raises(ValueError, match=msg): gb.fit(X, y) # nans are ignored in the counts X = np.array([[0, 1, np.nan]]).T y = np.arange(3) gb.fit(X, y) @pytest.mark.parametrize('Est', (HistGradientBoostingClassifier, HistGradientBoostingRegressor)) def test_uint8_predict(Est): # Non regression test for # https://github.com/scikit-learn/scikit-learn/issues/18408 # Make sure X can be of dtype uint8 (i.e. X_BINNED_DTYPE) in predict. It # will be converted to X_DTYPE. rng = np.random.RandomState(0) X = rng.randint(0, 100, size=(10, 2)).astype(np.uint8) y = rng.randint(0, 2, size=10).astype(np.uint8) est = Est() est.fit(X, y) est.predict(X)