import datetime as dt from datetime import datetime import dateutil import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, MultiIndex, Series, Timestamp, concat, date_range, to_timedelta, ) import pandas._testing as tm class TestDatetimeConcat: def test_concat_datetime64_block(self): from pandas.core.indexes.datetimes import date_range rng = date_range("1/1/2000", periods=10) df = DataFrame({"time": rng}) result = concat([df, df]) assert (result.iloc[:10]["time"] == rng).all() assert (result.iloc[10:]["time"] == rng).all() def test_concat_datetime_datetime64_frame(self): # GH#2624 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), "hi"]) df2_obj = DataFrame.from_records(rows, columns=["date", "test"]) ind = date_range(start="2000/1/1", freq="D", periods=10) df1 = DataFrame({"date": ind, "test": range(10)}) # it works! pd.concat([df1, df2_obj]) def test_concat_datetime_timezone(self): # GH 18523 idx1 = pd.date_range("2011-01-01", periods=3, freq="H", tz="Europe/Paris") idx2 = pd.date_range(start=idx1[0], end=idx1[-1], freq="H") df1 = DataFrame({"a": [1, 2, 3]}, index=idx1) df2 = DataFrame({"b": [1, 2, 3]}, index=idx2) result = pd.concat([df1, df2], axis=1) exp_idx = ( DatetimeIndex( [ "2011-01-01 00:00:00+01:00", "2011-01-01 01:00:00+01:00", "2011-01-01 02:00:00+01:00", ], freq="H", ) .tz_convert("UTC") .tz_convert("Europe/Paris") ) expected = DataFrame( [[1, 1], [2, 2], [3, 3]], index=exp_idx, columns=["a", "b"] ) tm.assert_frame_equal(result, expected) idx3 = pd.date_range("2011-01-01", periods=3, freq="H", tz="Asia/Tokyo") df3 = DataFrame({"b": [1, 2, 3]}, index=idx3) result = pd.concat([df1, df3], axis=1) exp_idx = DatetimeIndex( [ "2010-12-31 15:00:00+00:00", "2010-12-31 16:00:00+00:00", "2010-12-31 17:00:00+00:00", "2010-12-31 23:00:00+00:00", "2011-01-01 00:00:00+00:00", "2011-01-01 01:00:00+00:00", ] ) expected = DataFrame( [ [np.nan, 1], [np.nan, 2], [np.nan, 3], [1, np.nan], [2, np.nan], [3, np.nan], ], index=exp_idx, columns=["a", "b"], ) tm.assert_frame_equal(result, expected) # GH 13783: Concat after resample result = pd.concat( [df1.resample("H").mean(), df2.resample("H").mean()], sort=True ) expected = DataFrame( {"a": [1, 2, 3] + [np.nan] * 3, "b": [np.nan] * 3 + [1, 2, 3]}, index=idx1.append(idx1), ) tm.assert_frame_equal(result, expected) def test_concat_datetimeindex_freq(self): # GH 3232 # Monotonic index result dr = pd.date_range("01-Jan-2013", periods=100, freq="50L", tz="UTC") data = list(range(100)) expected = DataFrame(data, index=dr) result = pd.concat([expected[:50], expected[50:]]) tm.assert_frame_equal(result, expected) # Non-monotonic index result result = pd.concat([expected[50:], expected[:50]]) expected = DataFrame(data[50:] + data[:50], index=dr[50:].append(dr[:50])) expected.index._data.freq = None tm.assert_frame_equal(result, expected) def test_concat_multiindex_datetime_object_index(self): # https://github.com/pandas-dev/pandas/issues/11058 s = Series( ["a", "b"], index=MultiIndex.from_arrays( [ [1, 2], Index([dt.date(2013, 1, 1), dt.date(2014, 1, 1)], dtype="object"), ], names=["first", "second"], ), ) s2 = Series( ["a", "b"], index=MultiIndex.from_arrays( [ [1, 2], Index([dt.date(2013, 1, 1), dt.date(2015, 1, 1)], dtype="object"), ], names=["first", "second"], ), ) expected = DataFrame( [["a", "a"], ["b", np.nan], [np.nan, "b"]], index=MultiIndex.from_arrays( [ [1, 2, 2], DatetimeIndex( ["2013-01-01", "2014-01-01", "2015-01-01"], dtype="datetime64[ns]", freq=None, ), ], names=["first", "second"], ), ) result = concat([s, s2], axis=1) tm.assert_frame_equal(result, expected) def test_concat_NaT_series(self): # GH 11693 # test for merging NaT series with datetime series. x = Series( date_range("20151124 08:00", "20151124 09:00", freq="1h", tz="US/Eastern") ) y = Series(pd.NaT, index=[0, 1], dtype="datetime64[ns, US/Eastern]") expected = Series([x[0], x[1], pd.NaT, pd.NaT]) result = concat([x, y], ignore_index=True) tm.assert_series_equal(result, expected) # all NaT with tz expected = Series(pd.NaT, index=range(4), dtype="datetime64[ns, US/Eastern]") result = pd.concat([y, y], ignore_index=True) tm.assert_series_equal(result, expected) # without tz x = Series(pd.date_range("20151124 08:00", "20151124 09:00", freq="1h")) y = Series(pd.date_range("20151124 10:00", "20151124 11:00", freq="1h")) y[:] = pd.NaT expected = Series([x[0], x[1], pd.NaT, pd.NaT]) result = pd.concat([x, y], ignore_index=True) tm.assert_series_equal(result, expected) # all NaT without tz x[:] = pd.NaT expected = Series(pd.NaT, index=range(4), dtype="datetime64[ns]") result = pd.concat([x, y], ignore_index=True) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("tz", [None, "UTC"]) def test_concat_NaT_dataframes(self, tz): # GH 12396 first = DataFrame([[pd.NaT], [pd.NaT]]) first = first.apply(lambda x: x.dt.tz_localize(tz)) second = DataFrame( [[Timestamp("2015/01/01", tz=tz)], [Timestamp("2016/01/01", tz=tz)]], index=[2, 3], ) expected = DataFrame( [ pd.NaT, pd.NaT, Timestamp("2015/01/01", tz=tz), Timestamp("2016/01/01", tz=tz), ] ) result = pd.concat([first, second], axis=0) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("tz1", [None, "UTC"]) @pytest.mark.parametrize("tz2", [None, "UTC"]) @pytest.mark.parametrize("s", [pd.NaT, Timestamp("20150101")]) def test_concat_NaT_dataframes_all_NaT_axis_0(self, tz1, tz2, s): # GH 12396 # tz-naive first = DataFrame([[pd.NaT], [pd.NaT]]).apply(lambda x: x.dt.tz_localize(tz1)) second = DataFrame([s]).apply(lambda x: x.dt.tz_localize(tz2)) result = pd.concat([first, second], axis=0) expected = DataFrame(Series([pd.NaT, pd.NaT, s], index=[0, 1, 0])) expected = expected.apply(lambda x: x.dt.tz_localize(tz2)) if tz1 != tz2: expected = expected.astype(object) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("tz1", [None, "UTC"]) @pytest.mark.parametrize("tz2", [None, "UTC"]) def test_concat_NaT_dataframes_all_NaT_axis_1(self, tz1, tz2): # GH 12396 first = DataFrame(Series([pd.NaT, pd.NaT]).dt.tz_localize(tz1)) second = DataFrame(Series([pd.NaT]).dt.tz_localize(tz2), columns=[1]) expected = DataFrame( { 0: Series([pd.NaT, pd.NaT]).dt.tz_localize(tz1), 1: Series([pd.NaT, pd.NaT]).dt.tz_localize(tz2), } ) result = pd.concat([first, second], axis=1) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("tz1", [None, "UTC"]) @pytest.mark.parametrize("tz2", [None, "UTC"]) def test_concat_NaT_series_dataframe_all_NaT(self, tz1, tz2): # GH 12396 # tz-naive first = Series([pd.NaT, pd.NaT]).dt.tz_localize(tz1) second = DataFrame( [ [Timestamp("2015/01/01", tz=tz2)], [Timestamp("2016/01/01", tz=tz2)], ], index=[2, 3], ) expected = DataFrame( [ pd.NaT, pd.NaT, Timestamp("2015/01/01", tz=tz2), Timestamp("2016/01/01", tz=tz2), ] ) if tz1 != tz2: expected = expected.astype(object) result = pd.concat([first, second]) tm.assert_frame_equal(result, expected) class TestTimezoneConcat: def test_concat_tz_series(self): # gh-11755: tz and no tz x = Series(date_range("20151124 08:00", "20151124 09:00", freq="1h", tz="UTC")) y = Series(date_range("2012-01-01", "2012-01-02")) expected = Series([x[0], x[1], y[0], y[1]], dtype="object") result = concat([x, y], ignore_index=True) tm.assert_series_equal(result, expected) # gh-11887: concat tz and object x = Series(date_range("20151124 08:00", "20151124 09:00", freq="1h", tz="UTC")) y = Series(["a", "b"]) expected = Series([x[0], x[1], y[0], y[1]], dtype="object") result = concat([x, y], ignore_index=True) tm.assert_series_equal(result, expected) # see gh-12217 and gh-12306 # Concatenating two UTC times first = DataFrame([[datetime(2016, 1, 1)]]) first[0] = first[0].dt.tz_localize("UTC") second = DataFrame([[datetime(2016, 1, 2)]]) second[0] = second[0].dt.tz_localize("UTC") result = pd.concat([first, second]) assert result[0].dtype == "datetime64[ns, UTC]" # Concatenating two London times first = DataFrame([[datetime(2016, 1, 1)]]) first[0] = first[0].dt.tz_localize("Europe/London") second = DataFrame([[datetime(2016, 1, 2)]]) second[0] = second[0].dt.tz_localize("Europe/London") result = pd.concat([first, second]) assert result[0].dtype == "datetime64[ns, Europe/London]" # Concatenating 2+1 London times first = DataFrame([[datetime(2016, 1, 1)], [datetime(2016, 1, 2)]]) first[0] = first[0].dt.tz_localize("Europe/London") second = DataFrame([[datetime(2016, 1, 3)]]) second[0] = second[0].dt.tz_localize("Europe/London") result = pd.concat([first, second]) assert result[0].dtype == "datetime64[ns, Europe/London]" # Concat'ing 1+2 London times first = DataFrame([[datetime(2016, 1, 1)]]) first[0] = first[0].dt.tz_localize("Europe/London") second = DataFrame([[datetime(2016, 1, 2)], [datetime(2016, 1, 3)]]) second[0] = second[0].dt.tz_localize("Europe/London") result = pd.concat([first, second]) assert result[0].dtype == "datetime64[ns, Europe/London]" def test_concat_tz_series_tzlocal(self): # see gh-13583 x = [ Timestamp("2011-01-01", tz=dateutil.tz.tzlocal()), Timestamp("2011-02-01", tz=dateutil.tz.tzlocal()), ] y = [ Timestamp("2012-01-01", tz=dateutil.tz.tzlocal()), Timestamp("2012-02-01", tz=dateutil.tz.tzlocal()), ] result = concat([Series(x), Series(y)], ignore_index=True) tm.assert_series_equal(result, Series(x + y)) assert result.dtype == "datetime64[ns, tzlocal()]" def test_concat_tz_series_with_datetimelike(self): # see gh-12620: tz and timedelta x = [ Timestamp("2011-01-01", tz="US/Eastern"), Timestamp("2011-02-01", tz="US/Eastern"), ] y = [pd.Timedelta("1 day"), pd.Timedelta("2 day")] result = concat([Series(x), Series(y)], ignore_index=True) tm.assert_series_equal(result, Series(x + y, dtype="object")) # tz and period y = [pd.Period("2011-03", freq="M"), pd.Period("2011-04", freq="M")] result = concat([Series(x), Series(y)], ignore_index=True) tm.assert_series_equal(result, Series(x + y, dtype="object")) def test_concat_tz_frame(self): df2 = DataFrame( { "A": Timestamp("20130102", tz="US/Eastern"), "B": Timestamp("20130603", tz="CET"), }, index=range(5), ) # concat df3 = pd.concat([df2.A.to_frame(), df2.B.to_frame()], axis=1) tm.assert_frame_equal(df2, df3) def test_concat_multiple_tzs(self): # GH#12467 # combining datetime tz-aware and naive DataFrames ts1 = Timestamp("2015-01-01", tz=None) ts2 = Timestamp("2015-01-01", tz="UTC") ts3 = Timestamp("2015-01-01", tz="EST") df1 = DataFrame({"time": [ts1]}) df2 = DataFrame({"time": [ts2]}) df3 = DataFrame({"time": [ts3]}) results = pd.concat([df1, df2]).reset_index(drop=True) expected = DataFrame({"time": [ts1, ts2]}, dtype=object) tm.assert_frame_equal(results, expected) results = pd.concat([df1, df3]).reset_index(drop=True) expected = DataFrame({"time": [ts1, ts3]}, dtype=object) tm.assert_frame_equal(results, expected) results = pd.concat([df2, df3]).reset_index(drop=True) expected = DataFrame({"time": [ts2, ts3]}) tm.assert_frame_equal(results, expected) def test_concat_multiindex_with_tz(self): # GH 6606 df = DataFrame( { "dt": [ datetime(2014, 1, 1), datetime(2014, 1, 2), datetime(2014, 1, 3), ], "b": ["A", "B", "C"], "c": [1, 2, 3], "d": [4, 5, 6], } ) df["dt"] = df["dt"].apply(lambda d: Timestamp(d, tz="US/Pacific")) df = df.set_index(["dt", "b"]) exp_idx1 = DatetimeIndex( ["2014-01-01", "2014-01-02", "2014-01-03"] * 2, tz="US/Pacific", name="dt" ) exp_idx2 = Index(["A", "B", "C"] * 2, name="b") exp_idx = MultiIndex.from_arrays([exp_idx1, exp_idx2]) expected = DataFrame( {"c": [1, 2, 3] * 2, "d": [4, 5, 6] * 2}, index=exp_idx, columns=["c", "d"] ) result = concat([df, df]) tm.assert_frame_equal(result, expected) def test_concat_tz_not_aligned(self): # GH#22796 ts = pd.to_datetime([1, 2]).tz_localize("UTC") a = DataFrame({"A": ts}) b = DataFrame({"A": ts, "B": ts}) result = pd.concat([a, b], sort=True, ignore_index=True) expected = DataFrame( {"A": list(ts) + list(ts), "B": [pd.NaT, pd.NaT] + list(ts)} ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "t1", [ "2015-01-01", pytest.param( pd.NaT, marks=pytest.mark.xfail( reason="GH23037 incorrect dtype when concatenating" ), ), ], ) def test_concat_tz_NaT(self, t1): # GH#22796 # Concating tz-aware multicolumn DataFrames ts1 = Timestamp(t1, tz="UTC") ts2 = Timestamp("2015-01-01", tz="UTC") ts3 = Timestamp("2015-01-01", tz="UTC") df1 = DataFrame([[ts1, ts2]]) df2 = DataFrame([[ts3]]) result = pd.concat([df1, df2]) expected = DataFrame([[ts1, ts2], [ts3, pd.NaT]], index=[0, 0]) tm.assert_frame_equal(result, expected) class TestPeriodConcat: def test_concat_period_series(self): x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D")) y = Series(pd.PeriodIndex(["2015-10-01", "2016-01-01"], freq="D")) expected = Series([x[0], x[1], y[0], y[1]], dtype="Period[D]") result = concat([x, y], ignore_index=True) tm.assert_series_equal(result, expected) def test_concat_period_multiple_freq_series(self): x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D")) y = Series(pd.PeriodIndex(["2015-10-01", "2016-01-01"], freq="M")) expected = Series([x[0], x[1], y[0], y[1]], dtype="object") result = concat([x, y], ignore_index=True) tm.assert_series_equal(result, expected) assert result.dtype == "object" def test_concat_period_other_series(self): x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D")) y = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="M")) expected = Series([x[0], x[1], y[0], y[1]], dtype="object") result = concat([x, y], ignore_index=True) tm.assert_series_equal(result, expected) assert result.dtype == "object" # non-period x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D")) y = Series(DatetimeIndex(["2015-11-01", "2015-12-01"])) expected = Series([x[0], x[1], y[0], y[1]], dtype="object") result = concat([x, y], ignore_index=True) tm.assert_series_equal(result, expected) assert result.dtype == "object" x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D")) y = Series(["A", "B"]) expected = Series([x[0], x[1], y[0], y[1]], dtype="object") result = concat([x, y], ignore_index=True) tm.assert_series_equal(result, expected) assert result.dtype == "object" def test_concat_timedelta64_block(): rng = to_timedelta(np.arange(10), unit="s") df = DataFrame({"time": rng}) result = concat([df, df]) tm.assert_frame_equal(result.iloc[:10], df) tm.assert_frame_equal(result.iloc[10:], df)