"""Incremental Principal Components Analysis.""" # Author: Kyle Kastner # Giorgio Patrini # License: BSD 3 clause import numpy as np from scipy import linalg, sparse from ._base import _BasePCA from ..utils import gen_batches from ..utils.extmath import svd_flip, _incremental_mean_and_var from ..utils.validation import _deprecate_positional_args class IncrementalPCA(_BasePCA): """Incremental principal components analysis (IPCA). Linear dimensionality reduction using Singular Value Decomposition of the data, keeping only the most significant singular vectors to project the data to a lower dimensional space. The input data is centered but not scaled for each feature before applying the SVD. Depending on the size of the input data, this algorithm can be much more memory efficient than a PCA, and allows sparse input. This algorithm has constant memory complexity, on the order of ``batch_size * n_features``, enabling use of np.memmap files without loading the entire file into memory. For sparse matrices, the input is converted to dense in batches (in order to be able to subtract the mean) which avoids storing the entire dense matrix at any one time. The computational overhead of each SVD is ``O(batch_size * n_features ** 2)``, but only 2 * batch_size samples remain in memory at a time. There will be ``n_samples / batch_size`` SVD computations to get the principal components, versus 1 large SVD of complexity ``O(n_samples * n_features ** 2)`` for PCA. Read more in the :ref:`User Guide `. .. versionadded:: 0.16 Parameters ---------- n_components : int, default=None Number of components to keep. If ``n_components`` is ``None``, then ``n_components`` is set to ``min(n_samples, n_features)``. whiten : bool, default=False When True (False by default) the ``components_`` vectors are divided by ``n_samples`` times ``components_`` to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometimes improve the predictive accuracy of the downstream estimators by making data respect some hard-wired assumptions. copy : bool, default=True If False, X will be overwritten. ``copy=False`` can be used to save memory but is unsafe for general use. batch_size : int, default=None The number of samples to use for each batch. Only used when calling ``fit``. If ``batch_size`` is ``None``, then ``batch_size`` is inferred from the data and set to ``5 * n_features``, to provide a balance between approximation accuracy and memory consumption. Attributes ---------- components_ : ndarray of shape (n_components, n_features) Components with maximum variance. explained_variance_ : ndarray of shape (n_components,) Variance explained by each of the selected components. explained_variance_ratio_ : ndarray of shape (n_components,) Percentage of variance explained by each of the selected components. If all components are stored, the sum of explained variances is equal to 1.0. singular_values_ : ndarray of shape (n_components,) The singular values corresponding to each of the selected components. The singular values are equal to the 2-norms of the ``n_components`` variables in the lower-dimensional space. mean_ : ndarray of shape (n_features,) Per-feature empirical mean, aggregate over calls to ``partial_fit``. var_ : ndarray of shape (n_features,) Per-feature empirical variance, aggregate over calls to ``partial_fit``. noise_variance_ : float The estimated noise covariance following the Probabilistic PCA model from Tipping and Bishop 1999. See "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf. n_components_ : int The estimated number of components. Relevant when ``n_components=None``. n_samples_seen_ : int The number of samples processed by the estimator. Will be reset on new calls to fit, but increments across ``partial_fit`` calls. batch_size_ : int Inferred batch size from ``batch_size``. Examples -------- >>> from sklearn.datasets import load_digits >>> from sklearn.decomposition import IncrementalPCA >>> from scipy import sparse >>> X, _ = load_digits(return_X_y=True) >>> transformer = IncrementalPCA(n_components=7, batch_size=200) >>> # either partially fit on smaller batches of data >>> transformer.partial_fit(X[:100, :]) IncrementalPCA(batch_size=200, n_components=7) >>> # or let the fit function itself divide the data into batches >>> X_sparse = sparse.csr_matrix(X) >>> X_transformed = transformer.fit_transform(X_sparse) >>> X_transformed.shape (1797, 7) Notes ----- Implements the incremental PCA model from: *D. Ross, J. Lim, R. Lin, M. Yang, Incremental Learning for Robust Visual Tracking, International Journal of Computer Vision, Volume 77, Issue 1-3, pp. 125-141, May 2008.* See https://www.cs.toronto.edu/~dross/ivt/RossLimLinYang_ijcv.pdf This model is an extension of the Sequential Karhunen-Loeve Transform from: *A. Levy and M. Lindenbaum, Sequential Karhunen-Loeve Basis Extraction and its Application to Images, IEEE Transactions on Image Processing, Volume 9, Number 8, pp. 1371-1374, August 2000.* See https://www.cs.technion.ac.il/~mic/doc/skl-ip.pdf We have specifically abstained from an optimization used by authors of both papers, a QR decomposition used in specific situations to reduce the algorithmic complexity of the SVD. The source for this technique is *Matrix Computations, Third Edition, G. Holub and C. Van Loan, Chapter 5, section 5.4.4, pp 252-253.*. This technique has been omitted because it is advantageous only when decomposing a matrix with ``n_samples`` (rows) >= 5/3 * ``n_features`` (columns), and hurts the readability of the implemented algorithm. This would be a good opportunity for future optimization, if it is deemed necessary. References ---------- D. Ross, J. Lim, R. Lin, M. Yang. Incremental Learning for Robust Visual Tracking, International Journal of Computer Vision, Volume 77, Issue 1-3, pp. 125-141, May 2008. G. Golub and C. Van Loan. Matrix Computations, Third Edition, Chapter 5, Section 5.4.4, pp. 252-253. See Also -------- PCA KernelPCA SparsePCA TruncatedSVD """ @_deprecate_positional_args def __init__(self, n_components=None, *, whiten=False, copy=True, batch_size=None): self.n_components = n_components self.whiten = whiten self.copy = copy self.batch_size = batch_size def fit(self, X, y=None): """Fit the model with X, using minibatches of size batch_size. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : Ignored Returns ------- self : object Returns the instance itself. """ self.components_ = None self.n_samples_seen_ = 0 self.mean_ = .0 self.var_ = .0 self.singular_values_ = None self.explained_variance_ = None self.explained_variance_ratio_ = None self.noise_variance_ = None X = self._validate_data(X, accept_sparse=['csr', 'csc', 'lil'], copy=self.copy, dtype=[np.float64, np.float32]) n_samples, n_features = X.shape if self.batch_size is None: self.batch_size_ = 5 * n_features else: self.batch_size_ = self.batch_size for batch in gen_batches(n_samples, self.batch_size_, min_batch_size=self.n_components or 0): X_batch = X[batch] if sparse.issparse(X_batch): X_batch = X_batch.toarray() self.partial_fit(X_batch, check_input=False) return self def partial_fit(self, X, y=None, check_input=True): """Incremental fit with X. All of X is processed as a single batch. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. check_input : bool, default=True Run check_array on X. y : Ignored Returns ------- self : object Returns the instance itself. """ first_pass = not hasattr(self, "components_") if check_input: if sparse.issparse(X): raise TypeError( "IncrementalPCA.partial_fit does not support " "sparse input. Either convert data to dense " "or use IncrementalPCA.fit to do so in batches.") X = self._validate_data( X, copy=self.copy, dtype=[np.float64, np.float32], reset=first_pass) n_samples, n_features = X.shape if first_pass: self.components_ = None if self.n_components is None: if self.components_ is None: self.n_components_ = min(n_samples, n_features) else: self.n_components_ = self.components_.shape[0] elif not 1 <= self.n_components <= n_features: raise ValueError("n_components=%r invalid for n_features=%d, need " "more rows than columns for IncrementalPCA " "processing" % (self.n_components, n_features)) elif not self.n_components <= n_samples: raise ValueError("n_components=%r must be less or equal to " "the batch number of samples " "%d." % (self.n_components, n_samples)) else: self.n_components_ = self.n_components if (self.components_ is not None) and (self.components_.shape[0] != self.n_components_): raise ValueError("Number of input features has changed from %i " "to %i between calls to partial_fit! Try " "setting n_components to a fixed value." % (self.components_.shape[0], self.n_components_)) # This is the first partial_fit if not hasattr(self, 'n_samples_seen_'): self.n_samples_seen_ = 0 self.mean_ = .0 self.var_ = .0 # Update stats - they are 0 if this is the first step col_mean, col_var, n_total_samples = \ _incremental_mean_and_var( X, last_mean=self.mean_, last_variance=self.var_, last_sample_count=np.repeat(self.n_samples_seen_, X.shape[1])) n_total_samples = n_total_samples[0] # Whitening if self.n_samples_seen_ == 0: # If it is the first step, simply whiten X X -= col_mean else: col_batch_mean = np.mean(X, axis=0) X -= col_batch_mean # Build matrix of combined previous basis and new data mean_correction = \ np.sqrt((self.n_samples_seen_ / n_total_samples) * n_samples) * (self.mean_ - col_batch_mean) X = np.vstack((self.singular_values_.reshape((-1, 1)) * self.components_, X, mean_correction)) U, S, Vt = linalg.svd(X, full_matrices=False, check_finite=False) U, Vt = svd_flip(U, Vt, u_based_decision=False) explained_variance = S ** 2 / (n_total_samples - 1) explained_variance_ratio = S ** 2 / np.sum(col_var * n_total_samples) self.n_samples_seen_ = n_total_samples self.components_ = Vt[:self.n_components_] self.singular_values_ = S[:self.n_components_] self.mean_ = col_mean self.var_ = col_var self.explained_variance_ = explained_variance[:self.n_components_] self.explained_variance_ratio_ = \ explained_variance_ratio[:self.n_components_] if self.n_components_ < n_features: self.noise_variance_ = \ explained_variance[self.n_components_:].mean() else: self.noise_variance_ = 0. return self def transform(self, X): """Apply dimensionality reduction to X. X is projected on the first principal components previously extracted from a training set, using minibatches of size batch_size if X is sparse. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : ndarray of shape (n_samples, n_components) Examples -------- >>> import numpy as np >>> from sklearn.decomposition import IncrementalPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], ... [1, 1], [2, 1], [3, 2]]) >>> ipca = IncrementalPCA(n_components=2, batch_size=3) >>> ipca.fit(X) IncrementalPCA(batch_size=3, n_components=2) >>> ipca.transform(X) # doctest: +SKIP """ if sparse.issparse(X): n_samples = X.shape[0] output = [] for batch in gen_batches(n_samples, self.batch_size_, min_batch_size=self.n_components or 0): output.append(super().transform(X[batch].toarray())) return np.vstack(output) else: return super().transform(X)