""" test the label propagation module """ import numpy as np import pytest from scipy.sparse import issparse from sklearn.utils._testing import assert_warns from sklearn.utils._testing import assert_no_warnings from sklearn.semi_supervised import _label_propagation as label_propagation from sklearn.metrics.pairwise import rbf_kernel from sklearn.model_selection import train_test_split from sklearn.neighbors import NearestNeighbors from sklearn.datasets import make_classification from sklearn.exceptions import ConvergenceWarning from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal ESTIMATORS = [ (label_propagation.LabelPropagation, {'kernel': 'rbf'}), (label_propagation.LabelPropagation, {'kernel': 'knn', 'n_neighbors': 2}), (label_propagation.LabelPropagation, { 'kernel': lambda x, y: rbf_kernel(x, y, gamma=20) }), (label_propagation.LabelSpreading, {'kernel': 'rbf'}), (label_propagation.LabelSpreading, {'kernel': 'knn', 'n_neighbors': 2}), (label_propagation.LabelSpreading, { 'kernel': lambda x, y: rbf_kernel(x, y, gamma=20) }), ] def test_fit_transduction(): samples = [[1., 0.], [0., 2.], [1., 3.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert clf.transduction_[2] == 1 def test_distribution(): samples = [[1., 0.], [0., 1.], [1., 1.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) if parameters['kernel'] == 'knn': continue # unstable test; changes in k-NN ordering break it assert_array_almost_equal(clf.predict_proba([[1., 0.0]]), np.array([[1., 0.]]), 2) else: assert_array_almost_equal(np.asarray(clf.label_distributions_[2]), np.array([.5, .5]), 2) def test_predict(): samples = [[1., 0.], [0., 2.], [1., 3.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert_array_equal(clf.predict([[0.5, 2.5]]), np.array([1])) def test_predict_proba(): samples = [[1., 0.], [0., 1.], [1., 2.5]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert_array_almost_equal(clf.predict_proba([[1., 1.]]), np.array([[0.5, 0.5]])) def test_label_spreading_closed_form(): n_classes = 2 X, y = make_classification(n_classes=n_classes, n_samples=200, random_state=0) y[::3] = -1 clf = label_propagation.LabelSpreading().fit(X, y) # adopting notation from Zhou et al (2004): S = clf._build_graph() Y = np.zeros((len(y), n_classes + 1)) Y[np.arange(len(y)), y] = 1 Y = Y[:, :-1] for alpha in [0.1, 0.3, 0.5, 0.7, 0.9]: expected = np.dot(np.linalg.inv(np.eye(len(S)) - alpha * S), Y) expected /= expected.sum(axis=1)[:, np.newaxis] clf = label_propagation.LabelSpreading(max_iter=10000, alpha=alpha) clf.fit(X, y) assert_array_almost_equal(expected, clf.label_distributions_, 4) def test_label_propagation_closed_form(): n_classes = 2 X, y = make_classification(n_classes=n_classes, n_samples=200, random_state=0) y[::3] = -1 Y = np.zeros((len(y), n_classes + 1)) Y[np.arange(len(y)), y] = 1 unlabelled_idx = Y[:, (-1,)].nonzero()[0] labelled_idx = (Y[:, (-1,)] == 0).nonzero()[0] clf = label_propagation.LabelPropagation(max_iter=10000, gamma=0.1) clf.fit(X, y) # adopting notation from Zhu et al 2002 T_bar = clf._build_graph() Tuu = T_bar[tuple(np.meshgrid(unlabelled_idx, unlabelled_idx, indexing='ij'))] Tul = T_bar[tuple(np.meshgrid(unlabelled_idx, labelled_idx, indexing='ij'))] Y = Y[:, :-1] Y_l = Y[labelled_idx, :] Y_u = np.dot(np.dot(np.linalg.inv(np.eye(Tuu.shape[0]) - Tuu), Tul), Y_l) expected = Y.copy() expected[unlabelled_idx, :] = Y_u expected /= expected.sum(axis=1)[:, np.newaxis] assert_array_almost_equal(expected, clf.label_distributions_, 4) def test_valid_alpha(): n_classes = 2 X, y = make_classification(n_classes=n_classes, n_samples=200, random_state=0) for alpha in [-0.1, 0, 1, 1.1, None]: with pytest.raises(ValueError): label_propagation.LabelSpreading(alpha=alpha).fit(X, y) def test_convergence_speed(): # This is a non-regression test for #5774 X = np.array([[1., 0.], [0., 1.], [1., 2.5]]) y = np.array([0, 1, -1]) mdl = label_propagation.LabelSpreading(kernel='rbf', max_iter=5000) mdl.fit(X, y) # this should converge quickly: assert mdl.n_iter_ < 10 assert_array_equal(mdl.predict(X), [0, 1, 1]) def test_convergence_warning(): # This is a non-regression test for #5774 X = np.array([[1., 0.], [0., 1.], [1., 2.5]]) y = np.array([0, 1, -1]) mdl = label_propagation.LabelSpreading(kernel='rbf', max_iter=1) assert_warns(ConvergenceWarning, mdl.fit, X, y) assert mdl.n_iter_ == mdl.max_iter mdl = label_propagation.LabelPropagation(kernel='rbf', max_iter=1) assert_warns(ConvergenceWarning, mdl.fit, X, y) assert mdl.n_iter_ == mdl.max_iter mdl = label_propagation.LabelSpreading(kernel='rbf', max_iter=500) assert_no_warnings(mdl.fit, X, y) mdl = label_propagation.LabelPropagation(kernel='rbf', max_iter=500) assert_no_warnings(mdl.fit, X, y) def test_label_propagation_non_zero_normalizer(): # check that we don't divide by zero in case of null normalizer # non-regression test for # https://github.com/scikit-learn/scikit-learn/pull/15946 X = np.array([[100., 100.], [100., 100.], [0., 0.], [0., 0.]]) y = np.array([0, 1, -1, -1]) mdl = label_propagation.LabelSpreading(kernel='knn', max_iter=100, n_neighbors=1) assert_no_warnings(mdl.fit, X, y) def test_predict_sparse_callable_kernel(): # This is a non-regression test for #15866 # Custom sparse kernel (top-K RBF) def topk_rbf(X, Y=None, n_neighbors=10, gamma=1e-5): nn = NearestNeighbors(n_neighbors=10, metric='euclidean', n_jobs=-1) nn.fit(X) W = -1 * nn.kneighbors_graph(Y, mode='distance').power(2) * gamma np.exp(W.data, out=W.data) assert issparse(W) return W.T n_classes = 4 n_samples = 500 n_test = 10 X, y = make_classification(n_classes=n_classes, n_samples=n_samples, n_features=20, n_informative=20, n_redundant=0, n_repeated=0, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=n_test, random_state=0) model = label_propagation.LabelSpreading(kernel=topk_rbf) model.fit(X_train, y_train) assert model.score(X_test, y_test) >= 0.9 model = label_propagation.LabelPropagation(kernel=topk_rbf) model.fit(X_train, y_train) assert model.score(X_test, y_test) >= 0.9