# Sebastian Raschka 2014-2020 # mlxtend Machine Learning Library Extensions # # Implementation of the ADAptive LInear NEuron classification algorithm. # Author: Sebastian Raschka # # License: BSD 3 clause import numpy as np from time import time from .._base import _BaseModel from .._base import _IterativeModel from .._base import _Classifier class Adaline(_BaseModel, _IterativeModel, _Classifier): """ADAptive LInear NEuron classifier. Note that this implementation of Adaline expects binary class labels in {0, 1}. Parameters ------------ eta : float (default: 0.01) solver rate (between 0.0 and 1.0) epochs : int (default: 50) Passes over the training dataset. Prior to each epoch, the dataset is shuffled if `minibatches > 1` to prevent cycles in stochastic gradient descent. minibatches : int (default: None) The number of minibatches for gradient-based optimization. If None: Normal Equations (closed-form solution) If 1: Gradient Descent learning If len(y): Stochastic Gradient Descent (SGD) online learning If 1 < minibatches < len(y): SGD Minibatch learning random_seed : int (default: None) Set random state for shuffling and initializing the weights. print_progress : int (default: 0) Prints progress in fitting to stderr if not solver='normal equation' 0: No output 1: Epochs elapsed and cost 2: 1 plus time elapsed 3: 2 plus estimated time until completion Attributes ----------- w_ : 2d-array, shape={n_features, 1} Model weights after fitting. b_ : 1d-array, shape={1,} Bias unit after fitting. cost_ : list Sum of squared errors after each epoch. Examples ----------- For usage examples, please see http://rasbt.github.io/mlxtend/user_guide/classifier/Adaline/ """ def __init__(self, eta=0.01, epochs=50, minibatches=None, random_seed=None, print_progress=0): _BaseModel.__init__(self) _IterativeModel.__init__(self) _Classifier.__init__(self) self.eta = eta self.minibatches = minibatches self.epochs = epochs self.random_seed = random_seed self.print_progress = print_progress self._is_fitted = False def _fit(self, X, y, init_params=True): self._check_target_array(y, allowed={(0, 1)}) y_data = np.where(y == 0, -1., 1.) if init_params: self.b_, self.w_ = self._init_params( weights_shape=(X.shape[1], 1), bias_shape=(1,), random_seed=self.random_seed) self.cost_ = [] if self.minibatches is None: self.b_, self.w_ = self._normal_equation(X, y_data) # Gradient descent or stochastic gradient descent learning else: self.init_time_ = time() rgen = np.random.RandomState(self.random_seed) for i in range(self.epochs): for idx in self._yield_minibatches_idx( rgen=rgen, n_batches=self.minibatches, data_ary=y_data, shuffle=True): y_val = self._net_input(X[idx]) errors = (y_data[idx] - y_val) self.w_ += (self.eta * X[idx].T.dot(errors).reshape(self.w_.shape)) self.b_ += self.eta * errors.sum() cost = self._sum_squared_error_cost(y_data, self._net_input(X)) self.cost_.append(cost) if self.print_progress: self._print_progress(iteration=(i + 1), n_iter=self.epochs, cost=cost) return self def _sum_squared_error_cost(self, y, y_val): errors = (y - y_val) return (errors**2).sum() / 2.0 def _normal_equation(self, X, y): """Solve linear regression analytically.""" Xb = np.hstack((np.ones((X.shape[0], 1)), X)) w = np.zeros(X.shape[1]) z = np.linalg.inv(np.dot(Xb.T, Xb)) params = np.dot(z, np.dot(Xb.T, y)) b, w = np.array([params[0]]), params[1:].reshape(X.shape[1], 1) return b, w def _net_input(self, X): """Compute the linear net input.""" return (np.dot(X, self.w_) + self.b_).flatten() def _predict(self, X): return np.where(self._net_input(X) < 0.0, 0, 1)