# Stacking classifier # Sebastian Raschka 2014-2020 # mlxtend Machine Learning Library Extensions # # An ensemble-learning meta-classifier for stacking # Author: Sebastian Raschka # # License: BSD 3 clause import numpy as np import warnings from scipy import sparse from sklearn.base import TransformerMixin, clone from ..externals.estimator_checks import check_is_fitted from ..externals.name_estimators import _name_estimators from ..utils.base_compostion import _BaseXComposition from ._base_classification import _BaseStackingClassifier class StackingClassifier(_BaseXComposition, _BaseStackingClassifier, TransformerMixin): """A Stacking classifier for scikit-learn estimators for classification. Parameters ---------- classifiers : array-like, shape = [n_classifiers] A list of classifiers. Invoking the `fit` method on the `StackingClassifer` will fit clones of these original classifiers that will be stored in the class attribute `self.clfs_` if `use_clones=True` (default) and `fit_base_estimators=True` (default). meta_classifier : object The meta-classifier to be fitted on the ensemble of classifiers use_probas : bool (default: False) If True, trains meta-classifier based on predicted probabilities instead of class labels. drop_proba_col : string (default: None) Drops extra "probability" column in the feature set, because it is redundant: p(y_c) = 1 - p(y_1) + p(y_2) + ... + p(y_{c-1}). This can be useful for meta-classifiers that are sensitive to perfectly collinear features. If 'last', drops last probability column. If 'first', drops first probability column. Only relevant if `use_probas=True`. average_probas : bool (default: False) Averages the probabilities as meta features if `True`. Only relevant if `use_probas=True`. verbose : int, optional (default=0) Controls the verbosity of the building process. - `verbose=0` (default): Prints nothing - `verbose=1`: Prints the number & name of the regressor being fitted - `verbose=2`: Prints info about the parameters of the regressor being fitted - `verbose>2`: Changes `verbose` param of the underlying regressor to self.verbose - 2 use_features_in_secondary : bool (default: False) If True, the meta-classifier will be trained both on the predictions of the original classifiers and the original dataset. If False, the meta-classifier will be trained only on the predictions of the original classifiers. store_train_meta_features : bool (default: False) If True, the meta-features computed from the training data used for fitting the meta-classifier stored in the `self.train_meta_features_` array, which can be accessed after calling `fit`. use_clones : bool (default: True) Clones the classifiers for stacking classification if True (default) or else uses the original ones, which will be refitted on the dataset upon calling the `fit` method. Hence, if use_clones=True, the original input classifiers will remain unmodified upon using the StackingClassifier's `fit` method. Setting `use_clones=False` is recommended if you are working with estimators that are supporting the scikit-learn fit/predict API interface but are not compatible to scikit-learn's `clone` function. fit_base_estimators: bool (default: True) Refits classifiers in `classifiers` if True; uses references to the `classifiers`, otherwise (assumes that the classifiers were already fit). Note: fit_base_estimators=False will enforce use_clones to be False, and is incompatible to most scikit-learn wrappers! For instance, if any form of cross-validation is performed this would require the re-fitting classifiers to training folds, which would raise a NotFitterError if fit_base_estimators=False. (New in mlxtend v0.6.) Attributes ---------- clfs_ : list, shape=[n_classifiers] Fitted classifiers (clones of the original classifiers) meta_clf_ : estimator Fitted meta-classifier (clone of the original meta-estimator) train_meta_features : numpy array, shape = [n_samples, n_classifiers] meta-features for training data, where n_samples is the number of samples in training data and n_classifiers is the number of classfiers. Examples ----------- For usage examples, please see http://rasbt.github.io/mlxtend/user_guide/classifier/StackingClassifier/ """ def __init__(self, classifiers, meta_classifier, use_probas=False, drop_proba_col=None, average_probas=False, verbose=0, use_features_in_secondary=False, store_train_meta_features=False, use_clones=True, fit_base_estimators=True): self.classifiers = classifiers self.meta_classifier = meta_classifier self.use_probas = use_probas allowed = {None, 'first', 'last'} if drop_proba_col not in allowed: raise ValueError('`drop_proba_col` must be in %s. Got %s' % (allowed, drop_proba_col)) self.drop_proba_col = drop_proba_col self.average_probas = average_probas self.verbose = verbose self.use_features_in_secondary = use_features_in_secondary self.store_train_meta_features = store_train_meta_features self.use_clones = use_clones self.fit_base_estimators = fit_base_estimators @property def named_classifiers(self): return _name_estimators(self.classifiers) def fit(self, X, y, sample_weight=None): """ Fit ensemble classifers and the meta-classifier. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_outputs] Target values. sample_weight : array-like, shape = [n_samples], optional Sample weights passed as sample_weights to each regressor in the regressors list as well as the meta_regressor. Raises error if some regressor does not support sample_weight in the fit() method. Returns ------- self : object """ if not self.fit_base_estimators: warnings.warn("fit_base_estimators=False " "enforces use_clones to be `False`") self.use_clones = False if self.use_clones: self.clfs_ = clone(self.classifiers) self.meta_clf_ = clone(self.meta_classifier) else: self.clfs_ = self.classifiers self.meta_clf_ = self.meta_classifier if self.fit_base_estimators: if self.verbose > 0: print("Fitting %d classifiers..." % (len(self.classifiers))) for clf in self.clfs_: if self.verbose > 0: i = self.clfs_.index(clf) + 1 print("Fitting classifier%d: %s (%d/%d)" % (i, _name_estimators((clf,))[0][0], i, len(self.clfs_))) if self.verbose > 2: if hasattr(clf, 'verbose'): clf.set_params(verbose=self.verbose - 2) if self.verbose > 1: print(_name_estimators((clf,))[0][1]) if sample_weight is None: clf.fit(X, y) else: clf.fit(X, y, sample_weight=sample_weight) meta_features = self.predict_meta_features(X) if self.store_train_meta_features: self.train_meta_features_ = meta_features if not self.use_features_in_secondary: pass elif sparse.issparse(X): meta_features = sparse.hstack((X, meta_features)) else: meta_features = np.hstack((X, meta_features)) if sample_weight is None: self.meta_clf_.fit(meta_features, y) else: self.meta_clf_.fit(meta_features, y, sample_weight=sample_weight) return self def get_params(self, deep=True): """Return estimator parameter names for GridSearch support.""" return self._get_params('named_classifiers', deep=deep) def set_params(self, **params): """Set the parameters of this estimator. Valid parameter keys can be listed with ``get_params()``. Returns ------- self """ self._set_params('classifiers', 'named_classifiers', **params) return self def predict_meta_features(self, X): """ Get meta-features of test-data. Parameters ---------- X : numpy array, shape = [n_samples, n_features] Test vectors, where n_samples is the number of samples and n_features is the number of features. Returns ------- meta-features : numpy array, shape = [n_samples, n_classifiers] Returns the meta-features for test data. """ check_is_fitted(self, 'clfs_') if self.use_probas: if self.drop_proba_col == 'last': probas = np.asarray([clf.predict_proba(X)[:, :-1] for clf in self.clfs_]) elif self.drop_proba_col == 'first': probas = np.asarray([clf.predict_proba(X)[:, 1:] for clf in self.clfs_]) else: probas = np.asarray([clf.predict_proba(X) for clf in self.clfs_]) if self.average_probas: vals = np.average(probas, axis=0) else: vals = np.concatenate(probas, axis=1) else: vals = np.column_stack([clf.predict(X) for clf in self.clfs_]) return vals