# Stacking regressor # Sebastian Raschka 2014-2020 # mlxtend Machine Learning Library Extensions # # An ensemble-learning meta-regressor for stacking regression # Author: Sebastian Raschka # # License: BSD 3 clause from ..externals.estimator_checks import check_is_fitted from ..externals.name_estimators import _name_estimators from ..utils.base_compostion import _BaseXComposition import numpy as np import scipy.sparse as sparse from sklearn.base import RegressorMixin from sklearn.base import TransformerMixin from sklearn.base import clone class StackingRegressor(_BaseXComposition, RegressorMixin, TransformerMixin): """A Stacking regressor for scikit-learn estimators for regression. Parameters ---------- regressors : array-like, shape = [n_regressors] A list of regressors. Invoking the `fit` method on the `StackingRegressor` will fit clones of those original regressors that will be stored in the class attribute `self.regr_`. meta_regressor : object The meta-regressor to be fitted on the ensemble of regressors verbose : int, optional (default=0) Controls the verbosity of the building process. - `verbose=0` (default): Prints nothing - `verbose=1`: Prints the number & name of the regressor being fitted - `verbose=2`: Prints info about the parameters of the regressor being fitted - `verbose>2`: Changes `verbose` param of the underlying regressor to self.verbose - 2 use_features_in_secondary : bool (default: False) If True, the meta-regressor will be trained both on the predictions of the original regressors and the original dataset. If False, the meta-regressor will be trained only on the predictions of the original regressors. store_train_meta_features : bool (default: False) If True, the meta-features computed from the training data used for fitting the meta-regressor stored in the `self.train_meta_features_` array, which can be accessed after calling `fit`. Attributes ---------- regr_ : list, shape=[n_regressors] Fitted regressors (clones of the original regressors) meta_regr_ : estimator Fitted meta-regressor (clone of the original meta-estimator) coef_ : array-like, shape = [n_features] Model coefficients of the fitted meta-estimator intercept_ : float Intercept of the fitted meta-estimator train_meta_features : numpy array, shape = [n_samples, len(self.regressors)] meta-features for training data, where n_samples is the number of samples in training data and len(self.regressors) is the number of regressors. refit : bool (default: True) Clones the regressors for stacking regression if True (default) or else uses the original ones, which will be refitted on the dataset upon calling the `fit` method. Setting refit=False is recommended if you are working with estimators that are supporting the scikit-learn fit/predict API interface but are not compatible to scikit-learn's `clone` function. Examples ----------- For usage examples, please see http://rasbt.github.io/mlxtend/user_guide/regressor/StackingRegressor/ """ def __init__(self, regressors, meta_regressor, verbose=0, use_features_in_secondary=False, store_train_meta_features=False, refit=True): self.regressors = regressors self.meta_regressor = meta_regressor self.verbose = verbose self.use_features_in_secondary = use_features_in_secondary self.store_train_meta_features = store_train_meta_features self.refit = refit @property def named_regressors(self): return _name_estimators(self.regressors) def fit(self, X, y, sample_weight=None): """Learn weight coefficients from training data for each regressor. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values. sample_weight : array-like, shape = [n_samples], optional Sample weights passed as sample_weights to each regressor in the regressors list as well as the meta_regressor. Raises error if some regressor does not support sample_weight in the fit() method. Returns ------- self : object """ if self.refit: self.regr_ = clone(self.regressors) self.meta_regr_ = clone(self.meta_regressor) else: self.regr_ = self.regressors self.meta_regr_ = self.meta_regressor if self.verbose > 0: print("Fitting %d regressors..." % (len(self.regressors))) for regr in self.regr_: if self.verbose > 0: i = self.regr_.index(regr) + 1 print("Fitting regressor%d: %s (%d/%d)" % (i, _name_estimators((regr,))[0][0], i, len(self.regr_))) if self.verbose > 2: if hasattr(regr, 'verbose'): regr.set_params(verbose=self.verbose - 2) if self.verbose > 1: print(_name_estimators((regr,))[0][1]) if sample_weight is None: regr.fit(X, y) else: regr.fit(X, y, sample_weight=sample_weight) meta_features = self.predict_meta_features(X) if not self.use_features_in_secondary: # meta model uses the prediction outcomes only pass elif sparse.issparse(X): meta_features = sparse.hstack((X, meta_features)) else: meta_features = np.hstack((X, meta_features)) if sample_weight is None: self.meta_regr_.fit(meta_features, y) else: self.meta_regr_.fit(meta_features, y, sample_weight=sample_weight) # save meta-features for training data if self.store_train_meta_features: self.train_meta_features_ = meta_features return self @property def coef_(self): return self.meta_regr_.coef_ @property def intercept_(self): return self.meta_regr_.intercept_ def get_params(self, deep=True): """Return estimator parameter names for GridSearch support.""" return self._get_params('named_regressors', deep=deep) def set_params(self, **params): """Set the parameters of this estimator. Valid parameter keys can be listed with ``get_params()``. Returns ------- self """ self._set_params('regressors', 'named_regressors', **params) return self def predict_meta_features(self, X): """ Get meta-features of test-data. Parameters ---------- X : numpy array, shape = [n_samples, n_features] Test vectors, where n_samples is the number of samples and n_features is the number of features. Returns ------- meta-features : numpy array, shape = [n_samples, len(self.regressors)] meta-features for test data, where n_samples is the number of samples in test data and len(self.regressors) is the number of regressors. """ check_is_fitted(self, 'regr_') return np.column_stack([r.predict(X) for r in self.regr_]) def predict(self, X): """ Predict target values for X. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. Returns ---------- y_target : array-like, shape = [n_samples] or [n_samples, n_targets] Predicted target values. """ check_is_fitted(self, 'regr_') meta_features = self.predict_meta_features(X) if not self.use_features_in_secondary: return self.meta_regr_.predict(meta_features) elif sparse.issparse(X): return self.meta_regr_.predict(sparse.hstack((X, meta_features))) else: return self.meta_regr_.predict(np.hstack((X, meta_features)))