""" Module for applying conditional formatting to DataFrames and Series. """ from collections import defaultdict from contextlib import contextmanager import copy from functools import partial from itertools import product from typing import ( Any, Callable, DefaultDict, Dict, List, Optional, Sequence, Tuple, Union, ) from uuid import uuid4 import numpy as np from pandas._config import get_option from pandas._libs import lib from pandas._typing import Axis, FrameOrSeries, FrameOrSeriesUnion, Label from pandas.compat._optional import import_optional_dependency from pandas.util._decorators import doc from pandas.core.dtypes.common import is_float import pandas as pd from pandas.api.types import is_dict_like, is_list_like from pandas.core import generic import pandas.core.common as com from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.core.indexing import maybe_numeric_slice, non_reducing_slice jinja2 = import_optional_dependency("jinja2", extra="DataFrame.style requires jinja2.") try: from matplotlib import colors import matplotlib.pyplot as plt has_mpl = True except ImportError: has_mpl = False no_mpl_message = "{0} requires matplotlib." @contextmanager def _mpl(func: Callable): if has_mpl: yield plt, colors else: raise ImportError(no_mpl_message.format(func.__name__)) class Styler: """ Helps style a DataFrame or Series according to the data with HTML and CSS. Parameters ---------- data : Series or DataFrame Data to be styled - either a Series or DataFrame. precision : int Precision to round floats to, defaults to pd.options.display.precision. table_styles : list-like, default None List of {selector: (attr, value)} dicts; see Notes. uuid : str, default None A unique identifier to avoid CSS collisions; generated automatically. caption : str, default None Caption to attach to the table. table_attributes : str, default None Items that show up in the opening ```` tag in addition to automatic (by default) id. cell_ids : bool, default True If True, each cell will have an ``id`` attribute in their HTML tag. The ``id`` takes the form ``T__row_col`` where ```` is the unique identifier, ```` is the row number and ```` is the column number. na_rep : str, optional Representation for missing values. If ``na_rep`` is None, no special formatting is applied. .. versionadded:: 1.0.0 uuid_len : int, default 5 If ``uuid`` is not specified, the length of the ``uuid`` to randomly generate expressed in hex characters, in range [0, 32]. .. versionadded:: 1.2.0 Attributes ---------- env : Jinja2 jinja2.Environment template : Jinja2 Template loader : Jinja2 Loader See Also -------- DataFrame.style : Return a Styler object containing methods for building a styled HTML representation for the DataFrame. Notes ----- Most styling will be done by passing style functions into ``Styler.apply`` or ``Styler.applymap``. Style functions should return values with strings containing CSS ``'attr: value'`` that will be applied to the indicated cells. If using in the Jupyter notebook, Styler has defined a ``_repr_html_`` to automatically render itself. Otherwise call Styler.render to get the generated HTML. CSS classes are attached to the generated HTML * Index and Column names include ``index_name`` and ``level`` where `k` is its level in a MultiIndex * Index label cells include * ``row_heading`` * ``row`` where `n` is the numeric position of the row * ``level`` where `k` is the level in a MultiIndex * Column label cells include * ``col_heading`` * ``col`` where `n` is the numeric position of the column * ``level`` where `k` is the level in a MultiIndex * Blank cells include ``blank`` * Data cells include ``data`` """ loader = jinja2.PackageLoader("pandas", "io/formats/templates") env = jinja2.Environment(loader=loader, trim_blocks=True) template = env.get_template("html.tpl") def __init__( self, data: FrameOrSeriesUnion, precision: Optional[int] = None, table_styles: Optional[List[Dict[str, List[Tuple[str, str]]]]] = None, uuid: Optional[str] = None, caption: Optional[str] = None, table_attributes: Optional[str] = None, cell_ids: bool = True, na_rep: Optional[str] = None, uuid_len: int = 5, ): self.ctx: DefaultDict[Tuple[int, int], List[str]] = defaultdict(list) self._todo: List[Tuple[Callable, Tuple, Dict]] = [] if not isinstance(data, (pd.Series, pd.DataFrame)): raise TypeError("``data`` must be a Series or DataFrame") if data.ndim == 1: data = data.to_frame() if not data.index.is_unique or not data.columns.is_unique: raise ValueError("style is not supported for non-unique indices.") self.data = data self.index = data.index self.columns = data.columns if not isinstance(uuid_len, int) or not uuid_len >= 0: raise TypeError("``uuid_len`` must be an integer in range [0, 32].") self.uuid_len = min(32, uuid_len) self.uuid = (uuid or uuid4().hex[: self.uuid_len]) + "_" self.table_styles = table_styles self.caption = caption if precision is None: precision = get_option("display.precision") self.precision = precision self.table_attributes = table_attributes self.hidden_index = False self.hidden_columns: Sequence[int] = [] self.cell_ids = cell_ids self.na_rep = na_rep self.cell_context: Dict[str, Any] = {} # display_funcs maps (row, col) -> formatting function def default_display_func(x): if self.na_rep is not None and pd.isna(x): return self.na_rep elif is_float(x): display_format = f"{x:.{self.precision}f}" return display_format else: return x self._display_funcs: DefaultDict[ Tuple[int, int], Callable[[Any], str] ] = defaultdict(lambda: default_display_func) def _repr_html_(self) -> str: """ Hooks into Jupyter notebook rich display system. """ return self.render() @doc( NDFrame.to_excel, klass="Styler", storage_options=generic._shared_docs["storage_options"], ) def to_excel( self, excel_writer, sheet_name: str = "Sheet1", na_rep: str = "", float_format: Optional[str] = None, columns: Optional[Sequence[Label]] = None, header: Union[Sequence[Label], bool] = True, index: bool = True, index_label: Optional[Union[Label, Sequence[Label]]] = None, startrow: int = 0, startcol: int = 0, engine: Optional[str] = None, merge_cells: bool = True, encoding: Optional[str] = None, inf_rep: str = "inf", verbose: bool = True, freeze_panes: Optional[Tuple[int, int]] = None, ) -> None: from pandas.io.formats.excel import ExcelFormatter formatter = ExcelFormatter( self, na_rep=na_rep, cols=columns, header=header, float_format=float_format, index=index, index_label=index_label, merge_cells=merge_cells, inf_rep=inf_rep, ) formatter.write( excel_writer, sheet_name=sheet_name, startrow=startrow, startcol=startcol, freeze_panes=freeze_panes, engine=engine, ) def _translate(self): """ Convert the DataFrame in `self.data` and the attrs from `_build_styles` into a dictionary of {head, body, uuid, cellstyle}. """ table_styles = self.table_styles or [] caption = self.caption ctx = self.ctx precision = self.precision hidden_index = self.hidden_index hidden_columns = self.hidden_columns uuid = self.uuid ROW_HEADING_CLASS = "row_heading" COL_HEADING_CLASS = "col_heading" INDEX_NAME_CLASS = "index_name" DATA_CLASS = "data" BLANK_CLASS = "blank" BLANK_VALUE = "" def format_attr(pair): return f"{pair['key']}={pair['value']}" # for sparsifying a MultiIndex idx_lengths = _get_level_lengths(self.index) col_lengths = _get_level_lengths(self.columns, hidden_columns) cell_context = self.cell_context n_rlvls = self.data.index.nlevels n_clvls = self.data.columns.nlevels rlabels = self.data.index.tolist() clabels = self.data.columns.tolist() if n_rlvls == 1: rlabels = [[x] for x in rlabels] if n_clvls == 1: clabels = [[x] for x in clabels] clabels = list(zip(*clabels)) cellstyle_map = defaultdict(list) head = [] for r in range(n_clvls): # Blank for Index columns... row_es = [ { "type": "th", "value": BLANK_VALUE, "display_value": BLANK_VALUE, "is_visible": not hidden_index, "class": " ".join([BLANK_CLASS]), } ] * (n_rlvls - 1) # ... except maybe the last for columns.names name = self.data.columns.names[r] cs = [ BLANK_CLASS if name is None else INDEX_NAME_CLASS, f"level{r}", ] name = BLANK_VALUE if name is None else name row_es.append( { "type": "th", "value": name, "display_value": name, "class": " ".join(cs), "is_visible": not hidden_index, } ) if clabels: for c, value in enumerate(clabels[r]): cs = [ COL_HEADING_CLASS, f"level{r}", f"col{c}", ] cs.extend( cell_context.get("col_headings", {}).get(r, {}).get(c, []) ) es = { "type": "th", "value": value, "display_value": value, "class": " ".join(cs), "is_visible": _is_visible(c, r, col_lengths), } colspan = col_lengths.get((r, c), 0) if colspan > 1: es["attributes"] = [ format_attr({"key": "colspan", "value": f'"{colspan}"'}) ] row_es.append(es) head.append(row_es) if ( self.data.index.names and com.any_not_none(*self.data.index.names) and not hidden_index ): index_header_row = [] for c, name in enumerate(self.data.index.names): cs = [INDEX_NAME_CLASS, f"level{c}"] name = "" if name is None else name index_header_row.append( {"type": "th", "value": name, "class": " ".join(cs)} ) index_header_row.extend( [{"type": "th", "value": BLANK_VALUE, "class": " ".join([BLANK_CLASS])}] * (len(clabels[0]) - len(hidden_columns)) ) head.append(index_header_row) body = [] for r, idx in enumerate(self.data.index): row_es = [] for c, value in enumerate(rlabels[r]): rid = [ ROW_HEADING_CLASS, f"level{c}", f"row{r}", ] es = { "type": "th", "is_visible": (_is_visible(r, c, idx_lengths) and not hidden_index), "value": value, "display_value": value, "id": "_".join(rid[1:]), "class": " ".join(rid), } rowspan = idx_lengths.get((c, r), 0) if rowspan > 1: es["attributes"] = [ format_attr({"key": "rowspan", "value": f'"{rowspan}"'}) ] row_es.append(es) for c, col in enumerate(self.data.columns): cs = [DATA_CLASS, f"row{r}", f"col{c}"] cs.extend(cell_context.get("data", {}).get(r, {}).get(c, [])) formatter = self._display_funcs[(r, c)] value = self.data.iloc[r, c] row_dict = { "type": "td", "value": value, "class": " ".join(cs), "display_value": formatter(value), "is_visible": (c not in hidden_columns), } # only add an id if the cell has a style props = [] if self.cell_ids or (r, c) in ctx: row_dict["id"] = "_".join(cs[1:]) for x in ctx[r, c]: # have to handle empty styles like [''] if x.count(":"): props.append(tuple(x.split(":"))) else: props.append(("", "")) row_es.append(row_dict) cellstyle_map[tuple(props)].append(f"row{r}_col{c}") body.append(row_es) cellstyle = [ {"props": list(props), "selectors": selectors} for props, selectors in cellstyle_map.items() ] table_attr = self.table_attributes use_mathjax = get_option("display.html.use_mathjax") if not use_mathjax: table_attr = table_attr or "" if 'class="' in table_attr: table_attr = table_attr.replace('class="', 'class="tex2jax_ignore ') else: table_attr += ' class="tex2jax_ignore"' return { "head": head, "cellstyle": cellstyle, "body": body, "uuid": uuid, "precision": precision, "table_styles": table_styles, "caption": caption, "table_attributes": table_attr, } def format(self, formatter, subset=None, na_rep: Optional[str] = None) -> "Styler": """ Format the text display value of cells. Parameters ---------- formatter : str, callable, dict or None If ``formatter`` is None, the default formatter is used. subset : IndexSlice An argument to ``DataFrame.loc`` that restricts which elements ``formatter`` is applied to. na_rep : str, optional Representation for missing values. If ``na_rep`` is None, no special formatting is applied. .. versionadded:: 1.0.0 Returns ------- self : Styler Notes ----- ``formatter`` is either an ``a`` or a dict ``{column name: a}`` where ``a`` is one of - str: this will be wrapped in: ``a.format(x)`` - callable: called with the value of an individual cell The default display value for numeric values is the "general" (``g``) format with ``pd.options.display.precision`` precision. Examples -------- >>> df = pd.DataFrame(np.random.randn(4, 2), columns=['a', 'b']) >>> df.style.format("{:.2%}") >>> df['c'] = ['a', 'b', 'c', 'd'] >>> df.style.format({'c': str.upper}) """ if formatter is None: assert self._display_funcs.default_factory is not None formatter = self._display_funcs.default_factory() if subset is None: row_locs = range(len(self.data)) col_locs = range(len(self.data.columns)) else: subset = non_reducing_slice(subset) if len(subset) == 1: subset = subset, self.data.columns sub_df = self.data.loc[subset] row_locs = self.data.index.get_indexer_for(sub_df.index) col_locs = self.data.columns.get_indexer_for(sub_df.columns) if is_dict_like(formatter): for col, col_formatter in formatter.items(): # formatter must be callable, so '{}' are converted to lambdas col_formatter = _maybe_wrap_formatter(col_formatter, na_rep) col_num = self.data.columns.get_indexer_for([col])[0] for row_num in row_locs: self._display_funcs[(row_num, col_num)] = col_formatter else: # single scalar to format all cells with formatter = _maybe_wrap_formatter(formatter, na_rep) locs = product(*(row_locs, col_locs)) for i, j in locs: self._display_funcs[(i, j)] = formatter return self def set_td_classes(self, classes: DataFrame) -> "Styler": """ Add string based CSS class names to data cells that will appear within the `Styler` HTML result. These classes are added within specified `
` elements. Parameters ---------- classes : DataFrame DataFrame containing strings that will be translated to CSS classes, mapped by identical column and index values that must exist on the underlying `Styler` data. None, NaN values, and empty strings will be ignored and not affect the rendered HTML. Returns ------- self : Styler Examples -------- >>> df = pd.DataFrame(data=[[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"]) >>> classes = pd.DataFrame([ ... ["min-val red", "", "blue"], ... ["red", None, "blue max-val"] ... ], index=df.index, columns=df.columns) >>> df.style.set_td_classes(classes) Using `MultiIndex` columns and a `classes` `DataFrame` as a subset of the underlying, >>> df = pd.DataFrame([[1,2],[3,4]], index=["a", "b"], ... columns=[["level0", "level0"], ["level1a", "level1b"]]) >>> classes = pd.DataFrame(["min-val"], index=["a"], ... columns=[["level0"],["level1a"]]) >>> df.style.set_td_classes(classes) Form of the output with new additional css classes, >>> df = pd.DataFrame([[1]]) >>> css = pd.DataFrame(["other-class"]) >>> s = Styler(df, uuid="_", cell_ids=False).set_td_classes(css) >>> s.hide_index().render() '' '' ' ' ' ' ' ' ' ' ' ' ' ' '
0
1
' """ classes = classes.reindex_like(self.data) mask = (classes.isna()) | (classes.eq("")) self.cell_context["data"] = { r: {c: [str(classes.iloc[r, c])]} for r, rn in enumerate(classes.index) for c, cn in enumerate(classes.columns) if not mask.iloc[r, c] } return self def render(self, **kwargs) -> str: """ Render the built up styles to HTML. Parameters ---------- **kwargs Any additional keyword arguments are passed through to ``self.template.render``. This is useful when you need to provide additional variables for a custom template. Returns ------- rendered : str The rendered HTML. Notes ----- ``Styler`` objects have defined the ``_repr_html_`` method which automatically calls ``self.render()`` when it's the last item in a Notebook cell. When calling ``Styler.render()`` directly, wrap the result in ``IPython.display.HTML`` to view the rendered HTML in the notebook. Pandas uses the following keys in render. Arguments passed in ``**kwargs`` take precedence, so think carefully if you want to override them: * head * cellstyle * body * uuid * precision * table_styles * caption * table_attributes """ self._compute() # TODO: namespace all the pandas keys d = self._translate() # filter out empty styles, every cell will have a class # but the list of props may just be [['', '']]. # so we have the nested anys below trimmed = [x for x in d["cellstyle"] if any(any(y) for y in x["props"])] d["cellstyle"] = trimmed d.update(kwargs) return self.template.render(**d) def _update_ctx(self, attrs: DataFrame) -> None: """ Update the state of the Styler. Collects a mapping of {index_label: [': ']}. Parameters ---------- attrs : DataFrame should contain strings of ': ;: ' Whitespace shouldn't matter and the final trailing ';' shouldn't matter. """ coli = {k: i for i, k in enumerate(self.columns)} rowi = {k: i for i, k in enumerate(self.index)} for jj in range(len(attrs.columns)): cn = attrs.columns[jj] j = coli[cn] for rn, c in attrs[[cn]].itertuples(): if not c: continue c = c.rstrip(";") if not c: continue i = rowi[rn] for pair in c.split(";"): self.ctx[(i, j)].append(pair) def _copy(self, deepcopy: bool = False) -> "Styler": styler = Styler( self.data, precision=self.precision, caption=self.caption, uuid=self.uuid, table_styles=self.table_styles, na_rep=self.na_rep, ) if deepcopy: styler.ctx = copy.deepcopy(self.ctx) styler._todo = copy.deepcopy(self._todo) else: styler.ctx = self.ctx styler._todo = self._todo return styler def __copy__(self) -> "Styler": """ Deep copy by default. """ return self._copy(deepcopy=False) def __deepcopy__(self, memo) -> "Styler": return self._copy(deepcopy=True) def clear(self) -> None: """ Reset the styler, removing any previously applied styles. Returns None. """ self.ctx.clear() self.cell_context = {} self._todo = [] def _compute(self): """ Execute the style functions built up in `self._todo`. Relies on the conventions that all style functions go through .apply or .applymap. The append styles to apply as tuples of (application method, *args, **kwargs) """ r = self for func, args, kwargs in self._todo: r = func(self)(*args, **kwargs) return r def _apply( self, func: Callable[..., "Styler"], axis: Optional[Axis] = 0, subset=None, **kwargs, ) -> "Styler": subset = slice(None) if subset is None else subset subset = non_reducing_slice(subset) data = self.data.loc[subset] if axis is not None: result = data.apply(func, axis=axis, result_type="expand", **kwargs) result.columns = data.columns else: result = func(data, **kwargs) if not isinstance(result, pd.DataFrame): raise TypeError( f"Function {repr(func)} must return a DataFrame when " f"passed to `Styler.apply` with axis=None" ) if not ( result.index.equals(data.index) and result.columns.equals(data.columns) ): raise ValueError( f"Result of {repr(func)} must have identical " f"index and columns as the input" ) result_shape = result.shape expected_shape = self.data.loc[subset].shape if result_shape != expected_shape: raise ValueError( f"Function {repr(func)} returned the wrong shape.\n" f"Result has shape: {result.shape}\n" f"Expected shape: {expected_shape}" ) self._update_ctx(result) return self def apply( self, func: Callable[..., "Styler"], axis: Optional[Axis] = 0, subset=None, **kwargs, ) -> "Styler": """ Apply a function column-wise, row-wise, or table-wise. Updates the HTML representation with the result. Parameters ---------- func : function ``func`` should take a Series or DataFrame (depending on ``axis``), and return an object with the same shape. Must return a DataFrame with identical index and column labels when ``axis=None``. axis : {0 or 'index', 1 or 'columns', None}, default 0 Apply to each column (``axis=0`` or ``'index'``), to each row (``axis=1`` or ``'columns'``), or to the entire DataFrame at once with ``axis=None``. subset : IndexSlice A valid indexer to limit ``data`` to *before* applying the function. Consider using a pandas.IndexSlice. **kwargs : dict Pass along to ``func``. Returns ------- self : Styler Notes ----- The output shape of ``func`` should match the input, i.e. if ``x`` is the input row, column, or table (depending on ``axis``), then ``func(x).shape == x.shape`` should be true. This is similar to ``DataFrame.apply``, except that ``axis=None`` applies the function to the entire DataFrame at once, rather than column-wise or row-wise. Examples -------- >>> def highlight_max(x): ... return ['background-color: yellow' if v == x.max() else '' for v in x] ... >>> df = pd.DataFrame(np.random.randn(5, 2)) >>> df.style.apply(highlight_max) """ self._todo.append( (lambda instance: getattr(instance, "_apply"), (func, axis, subset), kwargs) ) return self def _applymap(self, func: Callable, subset=None, **kwargs) -> "Styler": func = partial(func, **kwargs) # applymap doesn't take kwargs? if subset is None: subset = pd.IndexSlice[:] subset = non_reducing_slice(subset) result = self.data.loc[subset].applymap(func) self._update_ctx(result) return self def applymap(self, func: Callable, subset=None, **kwargs) -> "Styler": """ Apply a function elementwise. Updates the HTML representation with the result. Parameters ---------- func : function ``func`` should take a scalar and return a scalar. subset : IndexSlice A valid indexer to limit ``data`` to *before* applying the function. Consider using a pandas.IndexSlice. **kwargs : dict Pass along to ``func``. Returns ------- self : Styler See Also -------- Styler.where: Updates the HTML representation with a style which is selected in accordance with the return value of a function. """ self._todo.append( (lambda instance: getattr(instance, "_applymap"), (func, subset), kwargs) ) return self def where( self, cond: Callable, value: str, other: Optional[str] = None, subset=None, **kwargs, ) -> "Styler": """ Apply a function elementwise. Updates the HTML representation with a style which is selected in accordance with the return value of a function. Parameters ---------- cond : callable ``cond`` should take a scalar and return a boolean. value : str Applied when ``cond`` returns true. other : str Applied when ``cond`` returns false. subset : IndexSlice A valid indexer to limit ``data`` to *before* applying the function. Consider using a pandas.IndexSlice. **kwargs : dict Pass along to ``cond``. Returns ------- self : Styler See Also -------- Styler.applymap: Updates the HTML representation with the result. """ if other is None: other = "" return self.applymap( lambda val: value if cond(val) else other, subset=subset, **kwargs ) def set_precision(self, precision: int) -> "Styler": """ Set the precision used to render. Parameters ---------- precision : int Returns ------- self : Styler """ self.precision = precision return self def set_table_attributes(self, attributes: str) -> "Styler": """ Set the table attributes. These are the items that show up in the opening ```` tag in addition to automatic (by default) id. Parameters ---------- attributes : str Returns ------- self : Styler Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 4)) >>> df.style.set_table_attributes('class="pure-table"') # ...
... """ self.table_attributes = attributes return self def export(self) -> List[Tuple[Callable, Tuple, Dict]]: """ Export the styles to applied to the current Styler. Can be applied to a second style with ``Styler.use``. Returns ------- styles : list See Also -------- Styler.use: Set the styles on the current Styler. """ return self._todo def use(self, styles: List[Tuple[Callable, Tuple, Dict]]) -> "Styler": """ Set the styles on the current Styler. Possibly uses styles from ``Styler.export``. Parameters ---------- styles : list List of style functions. Returns ------- self : Styler See Also -------- Styler.export : Export the styles to applied to the current Styler. """ self._todo.extend(styles) return self def set_uuid(self, uuid: str) -> "Styler": """ Set the uuid for a Styler. Parameters ---------- uuid : str Returns ------- self : Styler """ self.uuid = uuid return self def set_caption(self, caption: str) -> "Styler": """ Set the caption on a Styler. Parameters ---------- caption : str Returns ------- self : Styler """ self.caption = caption return self def set_table_styles(self, table_styles, axis=0, overwrite=True) -> "Styler": """ Set the table styles on a Styler. These are placed in a ``