# -*- coding: utf-8 -*- """Pygame Drawing algorithms written in Python. (Work in Progress) Implement Pygame's Drawing Algorithms in a Python version for testing and debugging. """ from __future__ import absolute_import, division from collections import namedtuple import sys if sys.version_info >= (3, 0, 0): from math import floor, ceil else: # Python2.7 # FIXME : the import of the builtin math module is broken ... def floor(value): """ Get the floor int from a float. :param value: :return: an int """ int_value = int(value) return (int_value if (value == int_value or value > 0) else int_value - 1) def ceil(value): """ Get the ceil int from a float. :param value: :return: an int """ int_value = int(value) return (int_value if (int_value == value or value < 0) else int_value + 1) # H E L P E R F U N C T I O N S # # fractional part of x def frac(value): """return fractional part of x""" return value - floor(value) def inv_frac(value): """return inverse fractional part of x""" return 1 - (value - floor(value)) # eg, 1 - frac(x) BoundingBox = namedtuple('BoundingBox', ['left', 'top', 'right', 'bottom']) Point = namedtuple('Point', ['x', 'y']) # L O W L E V E L D R A W F U N C T I O N S # # (They are too low-level to be translated into python, right?) def set_at(surf, in_x, in_y, color): """ Set the color of a pixel in a surface""" surf.set_at((in_x, in_y), color) def draw_pixel(surf, pos, color, bright, blend=True): """draw one blended pixel with given brightness.""" try: other_col = surf.get_at(pos) if blend else (0, 0, 0, 0) except IndexError: # pixel outside the surface return new_color = tuple((bright * col + (1 - bright) * pix) for col, pix in zip(color, other_col)) # FIXME what should happen if only one, color or surf_col, has alpha? surf.set_at(pos, new_color) def _drawhorzline(surf, color, x_from, in_y, x_to): if x_from == x_to: surf.set_at((x_from, in_y), color) return start, end = (x_from, x_to) if x_from <= x_to else (x_to, x_from) for line_x in range(start, end + 1): surf.set_at((line_x, in_y), color) def _drawvertline(surf, color, in_x, y_from, y_to): if y_from == y_to: surf.set_at((in_x, y_from), color) return start, end = (y_from, y_to) if y_from <= y_to else (y_to, y_from) for line_y in range(start, end + 1): surf.set_at((in_x, line_y), color) # I N T E R N A L D R A W L I N E F U N C T I O N S # def _clip_and_draw_horizline(surf, color, x_from, in_y, x_to): """draw clipped horizontal line.""" # check Y inside surf clip = surf.get_clip() if in_y < clip.y or in_y >= clip.y + clip.h: return x_from = max(x_from, clip.x) x_to = min(x_to, clip.x + clip.w - 1) # check any x inside surf if x_to < clip.x or x_from >= clip.x + clip.w: return _drawhorzline(surf, color, x_from, in_y, x_to) def _clip_and_draw_vertline(surf, color, in_x, y_from, y_to): """draw clipped vertical line.""" # check X inside surf clip = surf.get_clip() if in_x < clip.x or in_x >= clip.x + clip.w: return y_from = max(y_from, clip.y) y_to = min(y_to, clip.y + clip.h - 1) # check any y inside surf if y_to < clip.y or y_from >= clip.y + clip.h: return _drawvertline(surf, color, in_x, y_from, y_to) # These constants xxx_EDGE are "outside-the-bounding-box"-flags LEFT_EDGE = 0x1 RIGHT_EDGE = 0x2 BOTTOM_EDGE = 0x4 TOP_EDGE = 0x8 def encode(pos, b_box): """returns a code that defines position with respect to a bounding box""" # we use the fact that python interprets booleans (the inequalities) # as 0/1, and then multiply them with the xxx_EDGE flags return ((pos[0] < b_box.left) * LEFT_EDGE + (pos[0] > b_box.right) * RIGHT_EDGE + (pos[1] < b_box.top) * TOP_EDGE + (pos[1] > b_box.bottom) * BOTTOM_EDGE) def clip_line(line, b_box, use_float=False): """Algorithm to calculate the clipped line. We calculate the coordinates of the part of the line segment within the bounding box (defined by left, top, right, bottom). The we write the coordinates of the line segment into "line", much like the C-algorithm. With `use_float` True, clip_line is usable for float-clipping. Returns: true if the line segment cuts the bounding box (false otherwise) """ def inside(code): return not code def accept(code_a, code_b): return not (code_a or code_b) def reject(code_a, code_b): return code_a and code_b assert isinstance(line, list) x_1, y_1, x_2, y_2 = line dtype = float if use_float else int while True: # the coordinates are progressively modified with the codes, # until they are either rejected or correspond to the final result. code1 = encode((x_1, y_1), b_box) code2 = encode((x_2, y_2), b_box) if accept(code1, code2): # write coordinates into "line" ! line[:] = x_1, y_1, x_2, y_2 return True if reject(code1, code2): return False # We operate on the (x_1, y_1) point, # and swap if it is inside the bbox: if inside(code1): x_1, x_2 = x_2, x_1 y_1, y_2 = y_2, y_1 code1, code2 = code2, code1 slope = (y_2 - y_1) / float(x_2 - x_1) if (x_2 != x_1) else 1.0 # Each case, if true, means that we are outside the border: # calculate x_1 and y_1 to be the "first point" inside the bbox... if code1 & LEFT_EDGE: y_1 += dtype((b_box.left - x_1) * slope) x_1 = b_box.left elif code1 & RIGHT_EDGE: y_1 += dtype((b_box.right - x_1) * slope) x_1 = b_box.right elif code1 & BOTTOM_EDGE: if x_2 != x_1: x_1 += dtype((b_box.bottom - y_1) / slope) y_1 = b_box.bottom elif code1 & TOP_EDGE: if x_2 != x_1: x_1 += dtype((b_box.top - y_1) / slope) y_1 = b_box.top def _draw_line(surf, color, start, end): """draw a non-horizontal line (without anti-aliasing).""" # Variant of https://en.wikipedia.org/wiki/Bresenham's_line_algorithm # # This strongly differs from craw.c implementation, because we use a # "slope" variable (instead of delta_x and delta_y) and a "error" variable. # And we can not do pointer-arithmetic with "BytesPerPixel", like in # the C-algorithm. if start.x == end.x: # This case should not happen... raise ValueError slope = abs((end.y - start.y) / (end.x - start.x)) error = 0.0 if slope < 1: # Here, it's a rather horizontal line # 1. check in which octants we are & set init values if end.x < start.x: start.x, end.x = end.x, start.x start.y, end.y = end.y, start.y line_y = start.y dy_sign = 1 if (start.y < end.y) else -1 # 2. step along x coordinate for line_x in range(start.x, end.x + 1): set_at(surf, line_x, line_y, color) error += slope if error >= 0.5: line_y += dy_sign error -= 1 else: # Case of a rather vertical line # 1. check in which octants we are & set init values if start.y > end.y: start.x, end.x = end.x, start.x start.y, end.y = end.y, start.y line_x = start.x slope = 1 / slope dx_sign = 1 if (start.x < end.x) else -1 # 2. step along y coordinate for line_y in range(start.y, end.y + 1): set_at(surf, line_x, line_y, color) error += slope if error >= 0.5: line_x += dx_sign error -= 1 def _draw_aaline(surf, color, start, end, blend): """draw an anti-aliased line. The algorithm yields identical results with _draw_line for horizontal, vertical or diagonal lines, and results changes smoothly when changing any of the endpoint coordinates. Note that this yields strange results for very short lines, eg a line from (0, 0) to (0, 1) will draw 2 pixels, and a line from (0, 0) to (0, 1.1) will blend 10 % on the pixel (0, 2). """ # The different requirements that we have on an antialiasing algorithm # implies to make some compromises: # 1. We want smooth evolution wrt to the 4 endpoint coordinates # (this means also that we want a smooth evolution when the angle # passes +/- 45° # 2. We want the same behavior when swapping the endpoints # 3. We want understandable results for the endpoint values # (eg we want to avoid half-integer values to draw a simple plain # horizontal or vertical line between two integer l endpoints) # # This implies to somehow make the line artificially 1 pixel longer # and to draw a full pixel when we have the endpoints are identical. d_x = end.x - start.x d_y = end.y - start.y if d_x == 0 and d_y == 0: # For smoothness reasons, we could also do some blending here, # but it seems overshoot... set_at(surf, int(start.x), int(start.y), color) return if start.x > end.x or start.y > end.y: start.x, end.x = end.x, start.x start.y, end.y = end.y, start.y d_x = -d_x d_y = -d_y if abs(d_x) >= abs(d_y): slope = d_y / d_x def draw_two_pixel(in_x, float_y, factor): flr_y = floor(float_y) draw_pixel(surf, (in_x, flr_y), color, factor * inv_frac(float_y), blend) draw_pixel(surf, (in_x, flr_y + 1), color, factor * frac(float_y), blend) _draw_aaline_dx(d_x, slope, end, start, draw_two_pixel) else: slope = d_x / d_y def draw_two_pixel(float_x, in_y, factor): fl_x = floor(float_x) draw_pixel(surf, (fl_x, in_y), color, factor * inv_frac(float_x), blend) draw_pixel(surf, (fl_x + 1, in_y), color, factor * frac(float_x), blend) _draw_aaline_dy(d_y, slope, end, start, draw_two_pixel) def _draw_aaline_dy(d_y, slope, end, start, draw_two_pixel): g_y = ceil(start.y) g_x = start.x + (g_y - start.y) * slope # 1. Draw start of the segment if start.y < g_y: draw_two_pixel(g_x - slope, floor(start.y), inv_frac(start.y)) # 2. Draw end of the segment rest = frac(end.y) s_y = ceil(end.y) if rest > 0: s_x = start.x + slope * (d_y + 1 - rest) draw_two_pixel(s_x, s_y, rest) else: s_y += 1 # 3. loop for other points for line_y in range(g_y, s_y): line_x = g_x + slope * (line_y - g_y) draw_two_pixel(line_x, line_y, 1) def _draw_aaline_dx(d_x, slope, end, start, draw_two_pixel): # A and G are respectively left and right to the "from" point, but # with integer-x-coordinate, (and only if from_x is not integer). # Hence they appear in following order on the line in general case: # A from-pt G . . . to-pt S # |------*-------|--- . . . ---|-----*------|- g_x = ceil(start.x) g_y = start.y + (g_x - start.x) * slope # 1. Draw start of the segment if we have a non-integer-part if start.x < g_x: # this corresponds to the point "A" draw_two_pixel(floor(start.x), g_y - slope, inv_frac(start.x)) # 2. Draw end of the segment: we add one pixel for homogeneity reasons rest = frac(end.x) s_x = ceil(end.x) if rest > 0: # Again we draw only if we have a non-integer-part s_y = start.y + slope * (d_x + 1 - rest) draw_two_pixel(s_x, s_y, rest) else: s_x += 1 # 3. loop for other points for line_x in range(g_x, s_x): line_y = g_y + slope * (line_x - g_x) draw_two_pixel(line_x, line_y, 1) # C L I P A N D D R A W L I N E F U N C T I O N S # def _clip_and_draw_line(surf, rect, color, pts): """clip the line into the rectangle and draw if needed. Returns true if anything has been drawn, else false.""" # "pts" is a list with the four coordinates of the two endpoints # of the line to be drawn : pts = x1, y1, x2, y2. # The data format is like that to stay closer to the C-algorithm. if not clip_line(pts, BoundingBox(rect.x, rect.y, rect.x + rect.w - 1, rect.y + rect.h - 1)): # The line segment defined by "pts" is not crossing the rectangle return 0 if pts[1] == pts[3]: # eg y1 == y2 _drawhorzline(surf, color, pts[0], pts[1], pts[2]) elif pts[0] == pts[2]: # eg x1 == x2 _drawvertline(surf, color, pts[0], pts[1], pts[3]) else: _draw_line(surf, color, Point(pts[0], pts[1]), Point(pts[2], pts[3])) return 1 def _clip_and_draw_line_width(surf, rect, color, line, width): yinc = xinc = 0 if abs(line[0] - line[2]) > abs(line[1] - line[3]): yinc = 1 else: xinc = 1 newpts = line[:] if _clip_and_draw_line(surf, rect, color, newpts): anydrawn = 1 frame = newpts[:] else: anydrawn = 0 frame = [10000, 10000, -10000, -10000] for loop in range(1, width // 2 + 1): newpts[0] = line[0] + xinc * loop newpts[1] = line[1] + yinc * loop newpts[2] = line[2] + xinc * loop newpts[3] = line[3] + yinc * loop if _clip_and_draw_line(surf, rect, color, newpts): anydrawn = 1 frame[0] = min(newpts[0], frame[0]) frame[1] = min(newpts[1], frame[1]) frame[2] = max(newpts[2], frame[2]) frame[3] = max(newpts[3], frame[3]) if loop * 2 < width: newpts[0] = line[0] - xinc * loop newpts[1] = line[1] - yinc * loop newpts[2] = line[2] - xinc * loop newpts[3] = line[3] - yinc * loop if _clip_and_draw_line(surf, rect, color, newpts): anydrawn = 1 frame[0] = min(newpts[0], frame[0]) frame[1] = min(newpts[1], frame[1]) frame[2] = max(newpts[2], frame[2]) frame[3] = max(newpts[3], frame[3]) return anydrawn def _clip_and_draw_aaline(surf, rect, color, line, blend): """draw anti-aliased line between two endpoints.""" if not clip_line(line, BoundingBox(rect.x - 1, rect.y - 1, rect.x + rect.w, rect.y + rect.h), use_float=True): return # TODO Rect(rect.x, rect.y, 0, 0) _draw_aaline(surf, color, Point(line[0], line[1]), Point(line[2], line[3]), blend) return # TODO Rect(-- affected area --) # D R A W L I N E F U N C T I O N S # def draw_aaline(surf, color, from_point, to_point, blend=True): """draw anti-aliased line between two endpoints.""" line = [from_point[0], from_point[1], to_point[0], to_point[1]] return _clip_and_draw_aaline(surf, surf.get_clip(), color, line, blend) def draw_line(surf, color, from_point, to_point, width=1): """draw anti-aliased line between two endpoints.""" line = [from_point[0], from_point[1], to_point[0], to_point[1]] return _clip_and_draw_line_width(surf, surf.get_clip(), color, line, width) # M U L T I L I N E F U N C T I O N S # def _multi_lines(surf, color, closed, # pylint: disable=too-many-arguments points, width=1, blend=False, aaline=False): """draw several lines, either anti-aliased or not.""" # The code for anti-aliased or not is almost identical, so it's factorized if len(points) <= 2: raise TypeError line = [0] * 4 # store x1, y1 & x2, y2 of the lines to be drawn xlist = [pt[0] for pt in points] ylist = [pt[1] for pt in points] line[0] = xlist[0] line[1] = ylist[0] b_box = BoundingBox(left=xlist[0], right=xlist[0], top=ylist[0], bottom=ylist[0]) for line_x, line_y in points[1:]: b_box.left = min(b_box.left, line_x) b_box.right = max(b_box.right, line_x) b_box.top = min(b_box.top, line_y) b_box.bottom = max(b_box.bottom, line_y) rect = surf.get_clip() for loop in range(1, len(points)): line[0] = xlist[loop - 1] line[1] = ylist[loop - 1] line[2] = xlist[loop] line[3] = ylist[loop] if aaline: _clip_and_draw_aaline(surf, rect, color, line, blend) else: _clip_and_draw_line_width(surf, rect, color, line, width) if closed: line[0] = xlist[len(points) - 1] line[1] = ylist[len(points) - 1] line[2] = xlist[0] line[3] = ylist[0] if aaline: _clip_and_draw_aaline(surf, rect, color, line, blend) else: _clip_and_draw_line_width(surf, rect, color, line, width) # TODO Rect(...) def draw_lines(surf, color, closed, points, width=1): """draw several lines connected through the points.""" return _multi_lines(surf, color, closed, points, width, aaline=False) def draw_aalines(surf, color, closed, points, blend=True): """draw several anti-aliased lines connected through the points.""" return _multi_lines(surf, color, closed, points, blend=blend, aaline=True) def draw_polygon(surface, color, points, width): """ Draw a polygon""" if width: draw_lines(surface, color, 1, points, width) return # TODO Rect(...) num_points = len(points) point_x = [x for x, y in points] point_y = [y for x, y in points] miny = min(point_y) maxy = max(point_y) if miny == maxy: minx = min(point_x) maxx = max(point_x) _clip_and_draw_horizline(surface, color, minx, miny, maxx) return # TODO Rect(...) for y_coord in range(miny, maxy + 1): x_intersect = [] for i in range(num_points): _draw_polygon_inner_loop(i, point_x, point_y, y_coord, x_intersect) x_intersect.sort() for i in range(0, len(x_intersect), 2): _clip_and_draw_horizline(surface, color, x_intersect[i], y_coord, x_intersect[i + 1]) # special case : horizontal border lines for i in range(num_points): i_prev = i - 1 if i else num_points - 1 if miny < point_y[i] == point_y[i_prev] < maxy: _clip_and_draw_horizline(surface, color, point_x[i], point_y[i], point_x[i_prev]) return # TODO Rect(...) def _draw_polygon_inner_loop(index, point_x, point_y, y_coord, x_intersect): i_prev = index - 1 if index else len(point_x) - 1 y_1 = point_y[i_prev] y_2 = point_y[index] if y_1 < y_2: x_1 = point_x[i_prev] x_2 = point_x[index] elif y_1 > y_2: y_2 = point_y[i_prev] y_1 = point_y[index] x_2 = point_x[i_prev] x_1 = point_x[index] else: # special case handled below return if ((y_2 > y_coord >= y_1) or ((y_coord == max(point_y)) and (y_coord <= y_2))): x_intersect.append((y_coord - y_1) * (x_2 - x_1) // (y_2 - y_1) + x_1)