"""Calibration of predicted probabilities.""" # Author: Alexandre Gramfort # Balazs Kegl # Jan Hendrik Metzen # Mathieu Blondel # # License: BSD 3 clause import warnings from inspect import signature from contextlib import suppress from functools import partial from math import log import numpy as np from joblib import Parallel from scipy.special import expit from scipy.special import xlogy from scipy.optimize import fmin_bfgs from .base import (BaseEstimator, ClassifierMixin, RegressorMixin, clone, MetaEstimatorMixin) from .preprocessing import label_binarize, LabelEncoder from .utils import ( check_array, column_or_1d, deprecated, indexable, ) from .utils.multiclass import check_classification_targets from .utils.fixes import delayed from .utils.validation import check_is_fitted, check_consistent_length from .utils.validation import _check_sample_weight from .pipeline import Pipeline from .isotonic import IsotonicRegression from .svm import LinearSVC from .model_selection import check_cv, cross_val_predict from .utils.validation import _deprecate_positional_args class CalibratedClassifierCV(ClassifierMixin, MetaEstimatorMixin, BaseEstimator): """Probability calibration with isotonic regression or logistic regression. This class uses cross-validation to both estimate the parameters of a classifier and subsequently calibrate a classifier. With default `ensemble=True`, for each cv split it fits a copy of the base estimator to the training subset, and calibrates it using the testing subset. For prediction, predicted probabilities are averaged across these individual calibrated classifiers. When `ensemble=False`, cross-validation is used to obtain unbiased predictions, via :func:`~sklearn.model_selection.cross_val_predict`, which are then used for calibration. For prediction, the base estimator, trained using all the data, is used. This is the method implemented when `probabilities=True` for :mod:`sklearn.svm` estimators. Already fitted classifiers can be calibrated via the parameter `cv="prefit"`. In this case, no cross-validation is used and all provided data is used for calibration. The user has to take care manually that data for model fitting and calibration are disjoint. The calibration is based on the :term:`decision_function` method of the `base_estimator` if it exists, else on :term:`predict_proba`. Read more in the :ref:`User Guide `. Parameters ---------- base_estimator : estimator instance, default=None The classifier whose output need to be calibrated to provide more accurate `predict_proba` outputs. The default classifier is a :class:`~sklearn.svm.LinearSVC`. method : {'sigmoid', 'isotonic'}, default='sigmoid' The method to use for calibration. Can be 'sigmoid' which corresponds to Platt's method (i.e. a logistic regression model) or 'isotonic' which is a non-parametric approach. It is not advised to use isotonic calibration with too few calibration samples ``(<<1000)`` since it tends to overfit. cv : int, cross-validation generator, iterable or "prefit", \ default=None Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 5-fold cross-validation, - integer, to specify the number of folds. - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. For integer/None inputs, if ``y`` is binary or multiclass, :class:`~sklearn.model_selection.StratifiedKFold` is used. If ``y`` is neither binary nor multiclass, :class:`~sklearn.model_selection.KFold` is used. Refer to the :ref:`User Guide ` for the various cross-validation strategies that can be used here. If "prefit" is passed, it is assumed that `base_estimator` has been fitted already and all data is used for calibration. .. versionchanged:: 0.22 ``cv`` default value if None changed from 3-fold to 5-fold. n_jobs : int, default=None Number of jobs to run in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. Base estimator clones are fitted in parallel across cross-validation iterations. Therefore parallelism happens only when `cv != "prefit"`. See :term:`Glossary ` for more details. .. versionadded:: 0.24 ensemble : bool, default=True Determines how the calibrator is fitted when `cv` is not `'prefit'`. Ignored if `cv='prefit'`. If `True`, the `base_estimator` is fitted using training data and calibrated using testing data, for each `cv` fold. The final estimator is an ensemble of `n_cv` fitted classifer and calibrator pairs, where `n_cv` is the number of cross-validation folds. The output is the average predicted probabilities of all pairs. If `False`, `cv` is used to compute unbiased predictions, via :func:`~sklearn.model_selection.cross_val_predict`, which are then used for calibration. At prediction time, the classifier used is the `base_estimator` trained on all the data. Note that this method is also internally implemented in :mod:`sklearn.svm` estimators with the `probabilities=True` parameter. .. versionadded:: 0.24 Attributes ---------- classes_ : ndarray of shape (n_classes,) The class labels. calibrated_classifiers_ : list (len() equal to cv or 1 if `cv="prefit"` \ or `ensemble=False`) The list of classifier and calibrator pairs. - When `cv="prefit"`, the fitted `base_estimator` and fitted calibrator. - When `cv` is not "prefit" and `ensemble=True`, `n_cv` fitted `base_estimator` and calibrator pairs. `n_cv` is the number of cross-validation folds. - When `cv` is not "prefit" and `ensemble=False`, the `base_estimator`, fitted on all the data, and fitted calibrator. .. versionchanged:: 0.24 Single calibrated classifier case when `ensemble=False`. Examples -------- >>> from sklearn.datasets import make_classification >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.calibration import CalibratedClassifierCV >>> X, y = make_classification(n_samples=100, n_features=2, ... n_redundant=0, random_state=42) >>> base_clf = GaussianNB() >>> calibrated_clf = CalibratedClassifierCV(base_estimator=base_clf, cv=3) >>> calibrated_clf.fit(X, y) CalibratedClassifierCV(base_estimator=GaussianNB(), cv=3) >>> len(calibrated_clf.calibrated_classifiers_) 3 >>> calibrated_clf.predict_proba(X)[:5, :] array([[0.110..., 0.889...], [0.072..., 0.927...], [0.928..., 0.071...], [0.928..., 0.071...], [0.071..., 0.928...]]) >>> from sklearn.model_selection import train_test_split >>> X, y = make_classification(n_samples=100, n_features=2, ... n_redundant=0, random_state=42) >>> X_train, X_calib, y_train, y_calib = train_test_split( ... X, y, random_state=42 ... ) >>> base_clf = GaussianNB() >>> base_clf.fit(X_train, y_train) GaussianNB() >>> calibrated_clf = CalibratedClassifierCV( ... base_estimator=base_clf, ... cv="prefit" ... ) >>> calibrated_clf.fit(X_calib, y_calib) CalibratedClassifierCV(base_estimator=GaussianNB(), cv='prefit') >>> len(calibrated_clf.calibrated_classifiers_) 1 >>> calibrated_clf.predict_proba([[-0.5, 0.5]]) array([[0.936..., 0.063...]]) References ---------- .. [1] Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001 .. [2] Transforming Classifier Scores into Accurate Multiclass Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002) .. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods, J. Platt, (1999) .. [4] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ @_deprecate_positional_args def __init__(self, base_estimator=None, *, method='sigmoid', cv=None, n_jobs=None, ensemble=True): self.base_estimator = base_estimator self.method = method self.cv = cv self.n_jobs = n_jobs self.ensemble = ensemble def fit(self, X, y, sample_weight=None): """Fit the calibrated model. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ check_classification_targets(y) X, y = indexable(X, y) if self.base_estimator is None: # we want all classifiers that don't expose a random_state # to be deterministic (and we don't want to expose this one). base_estimator = LinearSVC(random_state=0) else: base_estimator = self.base_estimator self.calibrated_classifiers_ = [] if self.cv == "prefit": # `classes_` and `n_features_in_` should be consistent with that # of base_estimator if isinstance(self.base_estimator, Pipeline): check_is_fitted(self.base_estimator[-1]) else: check_is_fitted(self.base_estimator) with suppress(AttributeError): self.n_features_in_ = base_estimator.n_features_in_ self.classes_ = self.base_estimator.classes_ pred_method = _get_prediction_method(base_estimator) n_classes = len(self.classes_) predictions = _compute_predictions(pred_method, X, n_classes) calibrated_classifier = _fit_calibrator( base_estimator, predictions, y, self.classes_, self.method, sample_weight ) self.calibrated_classifiers_.append(calibrated_classifier) else: X, y = self._validate_data( X, y, accept_sparse=['csc', 'csr', 'coo'], force_all_finite=False, allow_nd=True ) # Set `classes_` using all `y` label_encoder_ = LabelEncoder().fit(y) self.classes_ = label_encoder_.classes_ n_classes = len(self.classes_) # sample_weight checks fit_parameters = signature(base_estimator.fit).parameters supports_sw = "sample_weight" in fit_parameters if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X) if not supports_sw: estimator_name = type(base_estimator).__name__ warnings.warn(f"Since {estimator_name} does not support " "sample_weights, sample weights will only be" " used for the calibration itself.") # Check that each cross-validation fold can have at least one # example per class if isinstance(self.cv, int): n_folds = self.cv elif hasattr(self.cv, "n_splits"): n_folds = self.cv.n_splits else: n_folds = None if n_folds and np.any([np.sum(y == class_) < n_folds for class_ in self.classes_]): raise ValueError(f"Requesting {n_folds}-fold " "cross-validation but provided less than " f"{n_folds} examples for at least one class.") cv = check_cv(self.cv, y, classifier=True) if self.ensemble: parallel = Parallel(n_jobs=self.n_jobs) self.calibrated_classifiers_ = parallel( delayed(_fit_classifier_calibrator_pair)( clone(base_estimator), X, y, train=train, test=test, method=self.method, classes=self.classes_, supports_sw=supports_sw, sample_weight=sample_weight) for train, test in cv.split(X, y) ) else: this_estimator = clone(base_estimator) method_name = _get_prediction_method(this_estimator).__name__ pred_method = partial( cross_val_predict, estimator=this_estimator, X=X, y=y, cv=cv, method=method_name, n_jobs=self.n_jobs ) predictions = _compute_predictions(pred_method, X, n_classes) if sample_weight is not None and supports_sw: this_estimator.fit(X, y, sample_weight) else: this_estimator.fit(X, y) calibrated_classifier = _fit_calibrator( this_estimator, predictions, y, self.classes_, self.method, sample_weight ) self.calibrated_classifiers_.append(calibrated_classifier) return self def predict_proba(self, X): """Calibrated probabilities of classification. This function returns calibrated probabilities of classification according to each class on an array of test vectors X. Parameters ---------- X : array-like of shape (n_samples, n_features) The samples. Returns ------- C : ndarray of shape (n_samples, n_classes) The predicted probas. """ check_is_fitted(self) X = check_array(X, accept_sparse=['csc', 'csr', 'coo'], force_all_finite=False) # Compute the arithmetic mean of the predictions of the calibrated # classifiers mean_proba = np.zeros((X.shape[0], len(self.classes_))) for calibrated_classifier in self.calibrated_classifiers_: proba = calibrated_classifier.predict_proba(X) mean_proba += proba mean_proba /= len(self.calibrated_classifiers_) return mean_proba def predict(self, X): """Predict the target of new samples. The predicted class is the class that has the highest probability, and can thus be different from the prediction of the uncalibrated classifier. Parameters ---------- X : array-like of shape (n_samples, n_features) The samples. Returns ------- C : ndarray of shape (n_samples,) The predicted class. """ check_is_fitted(self) return self.classes_[np.argmax(self.predict_proba(X), axis=1)] def _more_tags(self): return { '_xfail_checks': { 'check_sample_weights_invariance': 'zero sample_weight is not equivalent to removing samples', } } def _fit_classifier_calibrator_pair(estimator, X, y, train, test, supports_sw, method, classes, sample_weight=None): """Fit a classifier/calibration pair on a given train/test split. Fit the classifier on the train set, compute its predictions on the test set and use the predictions as input to fit the calibrator along with the test labels. Parameters ---------- estimator : estimator instance Cloned base estimator. X : array-like, shape (n_samples, n_features) Sample data. y : array-like, shape (n_samples,) Targets. train : ndarray, shape (n_train_indicies,) Indices of the training subset. test : ndarray, shape (n_test_indicies,) Indices of the testing subset. supports_sw : bool Whether or not the `estimator` supports sample weights. method : {'sigmoid', 'isotonic'} Method to use for calibration. classes : ndarray, shape (n_classes,) The target classes. sample_weight : array-like, default=None Sample weights for `X`. Returns ------- calibrated_classifier : _CalibratedClassifier instance """ if sample_weight is not None and supports_sw: estimator.fit(X[train], y[train], sample_weight=sample_weight[train]) else: estimator.fit(X[train], y[train]) n_classes = len(classes) pred_method = _get_prediction_method(estimator) predictions = _compute_predictions(pred_method, X[test], n_classes) sw = None if sample_weight is None else sample_weight[test] calibrated_classifier = _fit_calibrator( estimator, predictions, y[test], classes, method, sample_weight=sw ) return calibrated_classifier def _get_prediction_method(clf): """Return prediction method. `decision_function` method of `clf` returned, if it exists, otherwise `predict_proba` method returned. Parameters ---------- clf : Estimator instance Fitted classifier to obtain the prediction method from. Returns ------- prediction_method : callable The prediction method. """ if hasattr(clf, 'decision_function'): method = getattr(clf, 'decision_function') elif hasattr(clf, 'predict_proba'): method = getattr(clf, 'predict_proba') else: raise RuntimeError("'base_estimator' has no 'decision_function' or " "'predict_proba' method.") return method def _compute_predictions(pred_method, X, n_classes): """Return predictions for `X` and reshape binary outputs to shape (n_samples, 1). Parameters ---------- pred_method : callable Prediction method. X : array-like or None Data used to obtain predictions. n_classes : int Number of classes present. Returns ------- predictions : array-like, shape (X.shape[0], len(clf.classes_)) The predictions. Note if there are 2 classes, array is of shape (X.shape[0], 1). """ predictions = pred_method(X=X) if hasattr(pred_method, '__name__'): method_name = pred_method.__name__ else: method_name = signature(pred_method).parameters['method'].default if method_name == 'decision_function': if predictions.ndim == 1: predictions = predictions[:, np.newaxis] elif method_name == 'predict_proba': if n_classes == 2: predictions = predictions[:, 1:] else: # pragma: no cover # this branch should be unreachable. raise ValueError(f"Invalid prediction method: {method_name}") return predictions def _fit_calibrator(clf, predictions, y, classes, method, sample_weight=None): """Fit calibrator(s) and return a `_CalibratedClassifier` instance. `n_classes` (i.e. `len(clf.classes_)`) calibrators are fitted. However, if `n_classes` equals 2, one calibrator is fitted. Parameters ---------- clf : estimator instance Fitted classifier. predictions : array-like, shape (n_samples, n_classes) or (n_samples, 1) \ when binary. Raw predictions returned by the un-calibrated base classifier. y : array-like, shape (n_samples,) The targets. classes : ndarray, shape (n_classes,) All the prediction classes. method : {'sigmoid', 'isotonic'} The method to use for calibration. sample_weight : ndarray, shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Returns ------- pipeline : _CalibratedClassifier instance """ Y = label_binarize(y, classes=classes) label_encoder = LabelEncoder().fit(classes) pos_class_indices = label_encoder.transform(clf.classes_) calibrators = [] for class_idx, this_pred in zip(pos_class_indices, predictions.T): if method == 'isotonic': calibrator = IsotonicRegression(out_of_bounds='clip') elif method == 'sigmoid': calibrator = _SigmoidCalibration() else: raise ValueError("'method' should be one of: 'sigmoid' or " f"'isotonic'. Got {method}.") calibrator.fit(this_pred, Y[:, class_idx], sample_weight) calibrators.append(calibrator) pipeline = _CalibratedClassifier( clf, calibrators, method=method, classes=classes ) return pipeline class _CalibratedClassifier: """Pipeline-like chaining a fitted classifier and its fitted calibrators. Parameters ---------- base_estimator : estimator instance Fitted classifier. calibrators : list of fitted estimator instances List of fitted calibrators (either 'IsotonicRegression' or '_SigmoidCalibration'). The number of calibrators equals the number of classes. However, if there are 2 classes, the list contains only one fitted calibrator. classes : array-like of shape (n_classes,) All the prediction classes. method : {'sigmoid', 'isotonic'}, default='sigmoid' The method to use for calibration. Can be 'sigmoid' which corresponds to Platt's method or 'isotonic' which is a non-parametric approach based on isotonic regression. Attributes ---------- calibrators_ : list of fitted estimator instances Same as `calibrators`. Exposed for backward-compatibility. Use `calibrators` instead. .. deprecated:: 0.24 `calibrators_` is deprecated from 0.24 and will be removed in 1.1 (renaming of 0.26). Use `calibrators` instead. """ def __init__(self, base_estimator, calibrators, *, classes, method='sigmoid'): self.base_estimator = base_estimator self.calibrators = calibrators self.classes = classes self.method = method # TODO: Remove in 1.1 # mypy error: Decorated property not supported @deprecated( # type: ignore "calibrators_ is deprecated in 0.24 and will be removed in 1.1" "(renaming of 0.26). Use calibrators instead." ) @property def calibrators_(self): return self.calibrators def predict_proba(self, X): """Calculate calibrated probabilities. Calculates classification calibrated probabilities for each class, in a one-vs-all manner, for `X`. Parameters ---------- X : ndarray of shape (n_samples, n_features) The sample data. Returns ------- proba : array, shape (n_samples, n_classes) The predicted probabilities. Can be exact zeros. """ n_classes = len(self.classes) pred_method = _get_prediction_method(self.base_estimator) predictions = _compute_predictions(pred_method, X, n_classes) label_encoder = LabelEncoder().fit(self.classes) pos_class_indices = label_encoder.transform( self.base_estimator.classes_ ) proba = np.zeros((X.shape[0], n_classes)) for class_idx, this_pred, calibrator in \ zip(pos_class_indices, predictions.T, self.calibrators): if n_classes == 2: # When binary, `predictions` consists only of predictions for # clf.classes_[1] but `pos_class_indices` = 0 class_idx += 1 proba[:, class_idx] = calibrator.predict(this_pred) # Normalize the probabilities if n_classes == 2: proba[:, 0] = 1. - proba[:, 1] else: proba /= np.sum(proba, axis=1)[:, np.newaxis] # XXX : for some reason all probas can be 0 proba[np.isnan(proba)] = 1. / n_classes # Deal with cases where the predicted probability minimally exceeds 1.0 proba[(1.0 < proba) & (proba <= 1.0 + 1e-5)] = 1.0 return proba def _sigmoid_calibration(predictions, y, sample_weight=None): """Probability Calibration with sigmoid method (Platt 2000) Parameters ---------- predictions : ndarray of shape (n_samples,) The decision function or predict proba for the samples. y : ndarray of shape (n_samples,) The targets. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Returns ------- a : float The slope. b : float The intercept. References ---------- Platt, "Probabilistic Outputs for Support Vector Machines" """ predictions = column_or_1d(predictions) y = column_or_1d(y) F = predictions # F follows Platt's notations # Bayesian priors (see Platt end of section 2.2) prior0 = float(np.sum(y <= 0)) prior1 = y.shape[0] - prior0 T = np.zeros(y.shape) T[y > 0] = (prior1 + 1.) / (prior1 + 2.) T[y <= 0] = 1. / (prior0 + 2.) T1 = 1. - T def objective(AB): # From Platt (beginning of Section 2.2) P = expit(-(AB[0] * F + AB[1])) loss = -(xlogy(T, P) + xlogy(T1, 1. - P)) if sample_weight is not None: return (sample_weight * loss).sum() else: return loss.sum() def grad(AB): # gradient of the objective function P = expit(-(AB[0] * F + AB[1])) TEP_minus_T1P = T - P if sample_weight is not None: TEP_minus_T1P *= sample_weight dA = np.dot(TEP_minus_T1P, F) dB = np.sum(TEP_minus_T1P) return np.array([dA, dB]) AB0 = np.array([0., log((prior0 + 1.) / (prior1 + 1.))]) AB_ = fmin_bfgs(objective, AB0, fprime=grad, disp=False) return AB_[0], AB_[1] class _SigmoidCalibration(RegressorMixin, BaseEstimator): """Sigmoid regression model. Attributes ---------- a_ : float The slope. b_ : float The intercept. """ def fit(self, X, y, sample_weight=None): """Fit the model using X, y as training data. Parameters ---------- X : array-like of shape (n_samples,) Training data. y : array-like of shape (n_samples,) Training target. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ X = column_or_1d(X) y = column_or_1d(y) X, y = indexable(X, y) self.a_, self.b_ = _sigmoid_calibration(X, y, sample_weight) return self def predict(self, T): """Predict new data by linear interpolation. Parameters ---------- T : array-like of shape (n_samples,) Data to predict from. Returns ------- T_ : ndarray of shape (n_samples,) The predicted data. """ T = column_or_1d(T) return expit(-(self.a_ * T + self.b_)) @_deprecate_positional_args def calibration_curve(y_true, y_prob, *, normalize=False, n_bins=5, strategy='uniform'): """Compute true and predicted probabilities for a calibration curve. The method assumes the inputs come from a binary classifier, and discretize the [0, 1] interval into bins. Calibration curves may also be referred to as reliability diagrams. Read more in the :ref:`User Guide `. Parameters ---------- y_true : array-like of shape (n_samples,) True targets. y_prob : array-like of shape (n_samples,) Probabilities of the positive class. normalize : bool, default=False Whether y_prob needs to be normalized into the [0, 1] interval, i.e. is not a proper probability. If True, the smallest value in y_prob is linearly mapped onto 0 and the largest one onto 1. n_bins : int, default=5 Number of bins to discretize the [0, 1] interval. A bigger number requires more data. Bins with no samples (i.e. without corresponding values in `y_prob`) will not be returned, thus the returned arrays may have less than `n_bins` values. strategy : {'uniform', 'quantile'}, default='uniform' Strategy used to define the widths of the bins. uniform The bins have identical widths. quantile The bins have the same number of samples and depend on `y_prob`. Returns ------- prob_true : ndarray of shape (n_bins,) or smaller The proportion of samples whose class is the positive class, in each bin (fraction of positives). prob_pred : ndarray of shape (n_bins,) or smaller The mean predicted probability in each bin. References ---------- Alexandru Niculescu-Mizil and Rich Caruana (2005) Predicting Good Probabilities With Supervised Learning, in Proceedings of the 22nd International Conference on Machine Learning (ICML). See section 4 (Qualitative Analysis of Predictions). Examples -------- >>> import numpy as np >>> from sklearn.calibration import calibration_curve >>> y_true = np.array([0, 0, 0, 0, 1, 1, 1, 1, 1]) >>> y_pred = np.array([0.1, 0.2, 0.3, 0.4, 0.65, 0.7, 0.8, 0.9, 1.]) >>> prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=3) >>> prob_true array([0. , 0.5, 1. ]) >>> prob_pred array([0.2 , 0.525, 0.85 ]) """ y_true = column_or_1d(y_true) y_prob = column_or_1d(y_prob) check_consistent_length(y_true, y_prob) if normalize: # Normalize predicted values into interval [0, 1] y_prob = (y_prob - y_prob.min()) / (y_prob.max() - y_prob.min()) elif y_prob.min() < 0 or y_prob.max() > 1: raise ValueError("y_prob has values outside [0, 1] and normalize is " "set to False.") labels = np.unique(y_true) if len(labels) > 2: raise ValueError("Only binary classification is supported. " "Provided labels %s." % labels) y_true = label_binarize(y_true, classes=labels)[:, 0] if strategy == 'quantile': # Determine bin edges by distribution of data quantiles = np.linspace(0, 1, n_bins + 1) bins = np.percentile(y_prob, quantiles * 100) bins[-1] = bins[-1] + 1e-8 elif strategy == 'uniform': bins = np.linspace(0., 1. + 1e-8, n_bins + 1) else: raise ValueError("Invalid entry to 'strategy' input. Strategy " "must be either 'quantile' or 'uniform'.") binids = np.digitize(y_prob, bins) - 1 bin_sums = np.bincount(binids, weights=y_prob, minlength=len(bins)) bin_true = np.bincount(binids, weights=y_true, minlength=len(bins)) bin_total = np.bincount(binids, minlength=len(bins)) nonzero = bin_total != 0 prob_true = bin_true[nonzero] / bin_total[nonzero] prob_pred = bin_sums[nonzero] / bin_total[nonzero] return prob_true, prob_pred