projektAI/venv/Lib/site-packages/mlxtend/regressor/stacking_regression.py
2021-06-06 22:13:05 +02:00

239 lines
8.4 KiB
Python

# Stacking regressor
# Sebastian Raschka 2014-2020
# mlxtend Machine Learning Library Extensions
#
# An ensemble-learning meta-regressor for stacking regression
# Author: Sebastian Raschka <sebastianraschka.com>
#
# License: BSD 3 clause
from ..externals.estimator_checks import check_is_fitted
from ..externals.name_estimators import _name_estimators
from ..utils.base_compostion import _BaseXComposition
import numpy as np
import scipy.sparse as sparse
from sklearn.base import RegressorMixin
from sklearn.base import TransformerMixin
from sklearn.base import clone
class StackingRegressor(_BaseXComposition, RegressorMixin, TransformerMixin):
"""A Stacking regressor for scikit-learn estimators for regression.
Parameters
----------
regressors : array-like, shape = [n_regressors]
A list of regressors.
Invoking the `fit` method on the `StackingRegressor` will fit clones
of those original regressors that will
be stored in the class attribute
`self.regr_`.
meta_regressor : object
The meta-regressor to be fitted on the ensemble of
regressors
verbose : int, optional (default=0)
Controls the verbosity of the building process.
- `verbose=0` (default): Prints nothing
- `verbose=1`: Prints the number & name of the regressor being fitted
- `verbose=2`: Prints info about the parameters of the
regressor being fitted
- `verbose>2`: Changes `verbose` param of the underlying regressor to
self.verbose - 2
use_features_in_secondary : bool (default: False)
If True, the meta-regressor will be trained both on
the predictions of the original regressors and the
original dataset.
If False, the meta-regressor will be trained only on
the predictions of the original regressors.
store_train_meta_features : bool (default: False)
If True, the meta-features computed from the training data
used for fitting the
meta-regressor stored in the `self.train_meta_features_` array,
which can be
accessed after calling `fit`.
Attributes
----------
regr_ : list, shape=[n_regressors]
Fitted regressors (clones of the original regressors)
meta_regr_ : estimator
Fitted meta-regressor (clone of the original meta-estimator)
coef_ : array-like, shape = [n_features]
Model coefficients of the fitted meta-estimator
intercept_ : float
Intercept of the fitted meta-estimator
train_meta_features : numpy array,
shape = [n_samples, len(self.regressors)]
meta-features for training data, where n_samples is the
number of samples
in training data and len(self.regressors) is the number of regressors.
refit : bool (default: True)
Clones the regressors for stacking regression if True (default)
or else uses the original ones, which will be refitted on the dataset
upon calling the `fit` method. Setting refit=False is
recommended if you are working with estimators that are supporting
the scikit-learn fit/predict API interface but are not compatible
to scikit-learn's `clone` function.
Examples
-----------
For usage examples, please see
http://rasbt.github.io/mlxtend/user_guide/regressor/StackingRegressor/
"""
def __init__(self, regressors, meta_regressor, verbose=0,
use_features_in_secondary=False,
store_train_meta_features=False, refit=True):
self.regressors = regressors
self.meta_regressor = meta_regressor
self.verbose = verbose
self.use_features_in_secondary = use_features_in_secondary
self.store_train_meta_features = store_train_meta_features
self.refit = refit
@property
def named_regressors(self):
return _name_estimators(self.regressors)
def fit(self, X, y, sample_weight=None):
"""Learn weight coefficients from training data for each regressor.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape = [n_samples] or [n_samples, n_targets]
Target values.
sample_weight : array-like, shape = [n_samples], optional
Sample weights passed as sample_weights to each regressor
in the regressors list as well as the meta_regressor.
Raises error if some regressor does not support
sample_weight in the fit() method.
Returns
-------
self : object
"""
if self.refit:
self.regr_ = clone(self.regressors)
self.meta_regr_ = clone(self.meta_regressor)
else:
self.regr_ = self.regressors
self.meta_regr_ = self.meta_regressor
if self.verbose > 0:
print("Fitting %d regressors..." % (len(self.regressors)))
for regr in self.regr_:
if self.verbose > 0:
i = self.regr_.index(regr) + 1
print("Fitting regressor%d: %s (%d/%d)" %
(i, _name_estimators((regr,))[0][0], i, len(self.regr_)))
if self.verbose > 2:
if hasattr(regr, 'verbose'):
regr.set_params(verbose=self.verbose - 2)
if self.verbose > 1:
print(_name_estimators((regr,))[0][1])
if sample_weight is None:
regr.fit(X, y)
else:
regr.fit(X, y, sample_weight=sample_weight)
meta_features = self.predict_meta_features(X)
if not self.use_features_in_secondary:
# meta model uses the prediction outcomes only
pass
elif sparse.issparse(X):
meta_features = sparse.hstack((X, meta_features))
else:
meta_features = np.hstack((X, meta_features))
if sample_weight is None:
self.meta_regr_.fit(meta_features, y)
else:
self.meta_regr_.fit(meta_features, y, sample_weight=sample_weight)
# save meta-features for training data
if self.store_train_meta_features:
self.train_meta_features_ = meta_features
return self
@property
def coef_(self):
return self.meta_regr_.coef_
@property
def intercept_(self):
return self.meta_regr_.intercept_
def get_params(self, deep=True):
"""Return estimator parameter names for GridSearch support."""
return self._get_params('named_regressors', deep=deep)
def set_params(self, **params):
"""Set the parameters of this estimator.
Valid parameter keys can be listed with ``get_params()``.
Returns
-------
self
"""
self._set_params('regressors', 'named_regressors', **params)
return self
def predict_meta_features(self, X):
""" Get meta-features of test-data.
Parameters
----------
X : numpy array, shape = [n_samples, n_features]
Test vectors, where n_samples is the number of samples and
n_features is the number of features.
Returns
-------
meta-features : numpy array, shape = [n_samples, len(self.regressors)]
meta-features for test data, where n_samples is the number of
samples in test data and len(self.regressors) is the number
of regressors.
"""
check_is_fitted(self, 'regr_')
return np.column_stack([r.predict(X) for r in self.regr_])
def predict(self, X):
""" Predict target values for X.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and
n_features is the number of features.
Returns
----------
y_target : array-like, shape = [n_samples] or [n_samples, n_targets]
Predicted target values.
"""
check_is_fitted(self, 'regr_')
meta_features = self.predict_meta_features(X)
if not self.use_features_in_secondary:
return self.meta_regr_.predict(meta_features)
elif sparse.issparse(X):
return self.meta_regr_.predict(sparse.hstack((X, meta_features)))
else:
return self.meta_regr_.predict(np.hstack((X, meta_features)))