518 lines
20 KiB
Python
518 lines
20 KiB
Python
""" Test cases for .boxplot method """
|
|
|
|
import itertools
|
|
import string
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas.util._test_decorators as td
|
|
|
|
from pandas import DataFrame, MultiIndex, Series, date_range, timedelta_range
|
|
import pandas._testing as tm
|
|
from pandas.tests.plotting.common import TestPlotBase, _check_plot_works
|
|
|
|
import pandas.plotting as plotting
|
|
|
|
pytestmark = pytest.mark.slow
|
|
|
|
|
|
@td.skip_if_no_mpl
|
|
class TestDataFramePlots(TestPlotBase):
|
|
def test_boxplot_legacy1(self):
|
|
df = DataFrame(
|
|
np.random.randn(6, 4),
|
|
index=list(string.ascii_letters[:6]),
|
|
columns=["one", "two", "three", "four"],
|
|
)
|
|
df["indic"] = ["foo", "bar"] * 3
|
|
df["indic2"] = ["foo", "bar", "foo"] * 2
|
|
|
|
_check_plot_works(df.boxplot, return_type="dict")
|
|
_check_plot_works(df.boxplot, column=["one", "two"], return_type="dict")
|
|
# _check_plot_works adds an ax so catch warning. see GH #13188
|
|
with tm.assert_produces_warning(UserWarning):
|
|
_check_plot_works(df.boxplot, column=["one", "two"], by="indic")
|
|
_check_plot_works(df.boxplot, column="one", by=["indic", "indic2"])
|
|
with tm.assert_produces_warning(UserWarning):
|
|
_check_plot_works(df.boxplot, by="indic")
|
|
with tm.assert_produces_warning(UserWarning):
|
|
_check_plot_works(df.boxplot, by=["indic", "indic2"])
|
|
_check_plot_works(plotting._core.boxplot, data=df["one"], return_type="dict")
|
|
_check_plot_works(df.boxplot, notch=1, return_type="dict")
|
|
with tm.assert_produces_warning(UserWarning):
|
|
_check_plot_works(df.boxplot, by="indic", notch=1)
|
|
|
|
def test_boxplot_legacy2(self):
|
|
df = DataFrame(np.random.rand(10, 2), columns=["Col1", "Col2"])
|
|
df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
|
|
df["Y"] = Series(["A"] * 10)
|
|
with tm.assert_produces_warning(UserWarning):
|
|
_check_plot_works(df.boxplot, by="X")
|
|
|
|
# When ax is supplied and required number of axes is 1,
|
|
# passed ax should be used:
|
|
fig, ax = self.plt.subplots()
|
|
axes = df.boxplot("Col1", by="X", ax=ax)
|
|
ax_axes = ax.axes
|
|
assert ax_axes is axes
|
|
|
|
fig, ax = self.plt.subplots()
|
|
axes = df.groupby("Y").boxplot(ax=ax, return_type="axes")
|
|
ax_axes = ax.axes
|
|
assert ax_axes is axes["A"]
|
|
|
|
# Multiple columns with an ax argument should use same figure
|
|
fig, ax = self.plt.subplots()
|
|
with tm.assert_produces_warning(UserWarning):
|
|
axes = df.boxplot(
|
|
column=["Col1", "Col2"], by="X", ax=ax, return_type="axes"
|
|
)
|
|
assert axes["Col1"].get_figure() is fig
|
|
|
|
# When by is None, check that all relevant lines are present in the
|
|
# dict
|
|
fig, ax = self.plt.subplots()
|
|
d = df.boxplot(ax=ax, return_type="dict")
|
|
lines = list(itertools.chain.from_iterable(d.values()))
|
|
assert len(ax.get_lines()) == len(lines)
|
|
|
|
def test_boxplot_return_type_none(self):
|
|
# GH 12216; return_type=None & by=None -> axes
|
|
result = self.hist_df.boxplot()
|
|
assert isinstance(result, self.plt.Axes)
|
|
|
|
def test_boxplot_return_type_legacy(self):
|
|
# API change in https://github.com/pandas-dev/pandas/pull/7096
|
|
import matplotlib as mpl # noqa
|
|
|
|
df = DataFrame(
|
|
np.random.randn(6, 4),
|
|
index=list(string.ascii_letters[:6]),
|
|
columns=["one", "two", "three", "four"],
|
|
)
|
|
with pytest.raises(ValueError):
|
|
df.boxplot(return_type="NOTATYPE")
|
|
|
|
result = df.boxplot()
|
|
self._check_box_return_type(result, "axes")
|
|
|
|
with tm.assert_produces_warning(False):
|
|
result = df.boxplot(return_type="dict")
|
|
self._check_box_return_type(result, "dict")
|
|
|
|
with tm.assert_produces_warning(False):
|
|
result = df.boxplot(return_type="axes")
|
|
self._check_box_return_type(result, "axes")
|
|
|
|
with tm.assert_produces_warning(False):
|
|
result = df.boxplot(return_type="both")
|
|
self._check_box_return_type(result, "both")
|
|
|
|
def test_boxplot_axis_limits(self):
|
|
def _check_ax_limits(col, ax):
|
|
y_min, y_max = ax.get_ylim()
|
|
assert y_min <= col.min()
|
|
assert y_max >= col.max()
|
|
|
|
df = self.hist_df.copy()
|
|
df["age"] = np.random.randint(1, 20, df.shape[0])
|
|
# One full row
|
|
height_ax, weight_ax = df.boxplot(["height", "weight"], by="category")
|
|
_check_ax_limits(df["height"], height_ax)
|
|
_check_ax_limits(df["weight"], weight_ax)
|
|
assert weight_ax._sharey == height_ax
|
|
|
|
# Two rows, one partial
|
|
p = df.boxplot(["height", "weight", "age"], by="category")
|
|
height_ax, weight_ax, age_ax = p[0, 0], p[0, 1], p[1, 0]
|
|
dummy_ax = p[1, 1]
|
|
|
|
_check_ax_limits(df["height"], height_ax)
|
|
_check_ax_limits(df["weight"], weight_ax)
|
|
_check_ax_limits(df["age"], age_ax)
|
|
assert weight_ax._sharey == height_ax
|
|
assert age_ax._sharey == height_ax
|
|
assert dummy_ax._sharey is None
|
|
|
|
def test_boxplot_empty_column(self):
|
|
df = DataFrame(np.random.randn(20, 4))
|
|
df.loc[:, 0] = np.nan
|
|
_check_plot_works(df.boxplot, return_type="axes")
|
|
|
|
def test_figsize(self):
|
|
df = DataFrame(np.random.rand(10, 5), columns=["A", "B", "C", "D", "E"])
|
|
result = df.boxplot(return_type="axes", figsize=(12, 8))
|
|
assert result.figure.bbox_inches.width == 12
|
|
assert result.figure.bbox_inches.height == 8
|
|
|
|
def test_fontsize(self):
|
|
df = DataFrame({"a": [1, 2, 3, 4, 5, 6]})
|
|
self._check_ticks_props(
|
|
df.boxplot("a", fontsize=16), xlabelsize=16, ylabelsize=16
|
|
)
|
|
|
|
def test_boxplot_numeric_data(self):
|
|
# GH 22799
|
|
df = DataFrame(
|
|
{
|
|
"a": date_range("2012-01-01", periods=100),
|
|
"b": np.random.randn(100),
|
|
"c": np.random.randn(100) + 2,
|
|
"d": date_range("2012-01-01", periods=100).astype(str),
|
|
"e": date_range("2012-01-01", periods=100, tz="UTC"),
|
|
"f": timedelta_range("1 days", periods=100),
|
|
}
|
|
)
|
|
ax = df.plot(kind="box")
|
|
assert [x.get_text() for x in ax.get_xticklabels()] == ["b", "c"]
|
|
|
|
@pytest.mark.parametrize(
|
|
"colors_kwd, expected",
|
|
[
|
|
(
|
|
{"boxes": "r", "whiskers": "b", "medians": "g", "caps": "c"},
|
|
{"boxes": "r", "whiskers": "b", "medians": "g", "caps": "c"},
|
|
),
|
|
({"boxes": "r"}, {"boxes": "r"}),
|
|
("r", {"boxes": "r", "whiskers": "r", "medians": "r", "caps": "r"}),
|
|
],
|
|
)
|
|
def test_color_kwd(self, colors_kwd, expected):
|
|
# GH: 26214
|
|
df = DataFrame(np.random.rand(10, 2))
|
|
result = df.boxplot(color=colors_kwd, return_type="dict")
|
|
for k, v in expected.items():
|
|
assert result[k][0].get_color() == v
|
|
|
|
@pytest.mark.parametrize(
|
|
"dict_colors, msg",
|
|
[({"boxes": "r", "invalid_key": "r"}, "invalid key 'invalid_key'")],
|
|
)
|
|
def test_color_kwd_errors(self, dict_colors, msg):
|
|
# GH: 26214
|
|
df = DataFrame(np.random.rand(10, 2))
|
|
with pytest.raises(ValueError, match=msg):
|
|
df.boxplot(color=dict_colors, return_type="dict")
|
|
|
|
@pytest.mark.parametrize(
|
|
"props, expected",
|
|
[
|
|
("boxprops", "boxes"),
|
|
("whiskerprops", "whiskers"),
|
|
("capprops", "caps"),
|
|
("medianprops", "medians"),
|
|
],
|
|
)
|
|
def test_specified_props_kwd(self, props, expected):
|
|
# GH 30346
|
|
df = DataFrame({k: np.random.random(100) for k in "ABC"})
|
|
kwd = {props: {"color": "C1"}}
|
|
result = df.boxplot(return_type="dict", **kwd)
|
|
|
|
assert result[expected][0].get_color() == "C1"
|
|
|
|
|
|
@td.skip_if_no_mpl
|
|
class TestDataFrameGroupByPlots(TestPlotBase):
|
|
def test_boxplot_legacy1(self):
|
|
grouped = self.hist_df.groupby(by="gender")
|
|
with tm.assert_produces_warning(UserWarning):
|
|
axes = _check_plot_works(grouped.boxplot, return_type="axes")
|
|
self._check_axes_shape(list(axes.values), axes_num=2, layout=(1, 2))
|
|
axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
|
|
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
|
|
|
|
def test_boxplot_legacy2(self):
|
|
tuples = zip(string.ascii_letters[:10], range(10))
|
|
df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples))
|
|
grouped = df.groupby(level=1)
|
|
with tm.assert_produces_warning(UserWarning):
|
|
axes = _check_plot_works(grouped.boxplot, return_type="axes")
|
|
self._check_axes_shape(list(axes.values), axes_num=10, layout=(4, 3))
|
|
|
|
axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
|
|
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
|
|
|
|
def test_boxplot_legacy3(self):
|
|
tuples = zip(string.ascii_letters[:10], range(10))
|
|
df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples))
|
|
grouped = df.unstack(level=1).groupby(level=0, axis=1)
|
|
with tm.assert_produces_warning(UserWarning):
|
|
axes = _check_plot_works(grouped.boxplot, return_type="axes")
|
|
self._check_axes_shape(list(axes.values), axes_num=3, layout=(2, 2))
|
|
axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
|
|
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
|
|
|
|
def test_grouped_plot_fignums(self):
|
|
n = 10
|
|
weight = Series(np.random.normal(166, 20, size=n))
|
|
height = Series(np.random.normal(60, 10, size=n))
|
|
with tm.RNGContext(42):
|
|
gender = np.random.choice(["male", "female"], size=n)
|
|
df = DataFrame({"height": height, "weight": weight, "gender": gender})
|
|
gb = df.groupby("gender")
|
|
|
|
res = gb.plot()
|
|
assert len(self.plt.get_fignums()) == 2
|
|
assert len(res) == 2
|
|
tm.close()
|
|
|
|
res = gb.boxplot(return_type="axes")
|
|
assert len(self.plt.get_fignums()) == 1
|
|
assert len(res) == 2
|
|
tm.close()
|
|
|
|
# now works with GH 5610 as gender is excluded
|
|
res = df.groupby("gender").hist()
|
|
tm.close()
|
|
|
|
def test_grouped_box_return_type(self):
|
|
df = self.hist_df
|
|
|
|
# old style: return_type=None
|
|
result = df.boxplot(by="gender")
|
|
assert isinstance(result, np.ndarray)
|
|
self._check_box_return_type(
|
|
result, None, expected_keys=["height", "weight", "category"]
|
|
)
|
|
|
|
# now for groupby
|
|
result = df.groupby("gender").boxplot(return_type="dict")
|
|
self._check_box_return_type(result, "dict", expected_keys=["Male", "Female"])
|
|
|
|
columns2 = "X B C D A G Y N Q O".split()
|
|
df2 = DataFrame(np.random.randn(50, 10), columns=columns2)
|
|
categories2 = "A B C D E F G H I J".split()
|
|
df2["category"] = categories2 * 5
|
|
|
|
for t in ["dict", "axes", "both"]:
|
|
returned = df.groupby("classroom").boxplot(return_type=t)
|
|
self._check_box_return_type(returned, t, expected_keys=["A", "B", "C"])
|
|
|
|
returned = df.boxplot(by="classroom", return_type=t)
|
|
self._check_box_return_type(
|
|
returned, t, expected_keys=["height", "weight", "category"]
|
|
)
|
|
|
|
returned = df2.groupby("category").boxplot(return_type=t)
|
|
self._check_box_return_type(returned, t, expected_keys=categories2)
|
|
|
|
returned = df2.boxplot(by="category", return_type=t)
|
|
self._check_box_return_type(returned, t, expected_keys=columns2)
|
|
|
|
def test_grouped_box_layout(self):
|
|
df = self.hist_df
|
|
|
|
msg = "Layout of 1x1 must be larger than required size 2"
|
|
with pytest.raises(ValueError, match=msg):
|
|
df.boxplot(column=["weight", "height"], by=df.gender, layout=(1, 1))
|
|
|
|
msg = "The 'layout' keyword is not supported when 'by' is None"
|
|
with pytest.raises(ValueError, match=msg):
|
|
df.boxplot(
|
|
column=["height", "weight", "category"],
|
|
layout=(2, 1),
|
|
return_type="dict",
|
|
)
|
|
|
|
msg = "At least one dimension of layout must be positive"
|
|
with pytest.raises(ValueError, match=msg):
|
|
df.boxplot(column=["weight", "height"], by=df.gender, layout=(-1, -1))
|
|
|
|
# _check_plot_works adds an ax so catch warning. see GH #13188
|
|
with tm.assert_produces_warning(UserWarning):
|
|
box = _check_plot_works(
|
|
df.groupby("gender").boxplot, column="height", return_type="dict"
|
|
)
|
|
self._check_axes_shape(self.plt.gcf().axes, axes_num=2, layout=(1, 2))
|
|
|
|
with tm.assert_produces_warning(UserWarning):
|
|
box = _check_plot_works(
|
|
df.groupby("category").boxplot, column="height", return_type="dict"
|
|
)
|
|
self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(2, 2))
|
|
|
|
# GH 6769
|
|
with tm.assert_produces_warning(UserWarning):
|
|
box = _check_plot_works(
|
|
df.groupby("classroom").boxplot, column="height", return_type="dict"
|
|
)
|
|
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
|
|
|
|
# GH 5897
|
|
axes = df.boxplot(
|
|
column=["height", "weight", "category"], by="gender", return_type="axes"
|
|
)
|
|
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
|
|
for ax in [axes["height"]]:
|
|
self._check_visible(ax.get_xticklabels(), visible=False)
|
|
self._check_visible([ax.xaxis.get_label()], visible=False)
|
|
for ax in [axes["weight"], axes["category"]]:
|
|
self._check_visible(ax.get_xticklabels())
|
|
self._check_visible([ax.xaxis.get_label()])
|
|
|
|
box = df.groupby("classroom").boxplot(
|
|
column=["height", "weight", "category"], return_type="dict"
|
|
)
|
|
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
|
|
|
|
with tm.assert_produces_warning(UserWarning):
|
|
box = _check_plot_works(
|
|
df.groupby("category").boxplot,
|
|
column="height",
|
|
layout=(3, 2),
|
|
return_type="dict",
|
|
)
|
|
self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(3, 2))
|
|
with tm.assert_produces_warning(UserWarning):
|
|
box = _check_plot_works(
|
|
df.groupby("category").boxplot,
|
|
column="height",
|
|
layout=(3, -1),
|
|
return_type="dict",
|
|
)
|
|
self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(3, 2))
|
|
|
|
box = df.boxplot(
|
|
column=["height", "weight", "category"], by="gender", layout=(4, 1)
|
|
)
|
|
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(4, 1))
|
|
|
|
box = df.boxplot(
|
|
column=["height", "weight", "category"], by="gender", layout=(-1, 1)
|
|
)
|
|
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(3, 1))
|
|
|
|
box = df.groupby("classroom").boxplot(
|
|
column=["height", "weight", "category"], layout=(1, 4), return_type="dict"
|
|
)
|
|
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(1, 4))
|
|
|
|
box = df.groupby("classroom").boxplot( # noqa
|
|
column=["height", "weight", "category"], layout=(1, -1), return_type="dict"
|
|
)
|
|
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(1, 3))
|
|
|
|
def test_grouped_box_multiple_axes(self):
|
|
# GH 6970, GH 7069
|
|
df = self.hist_df
|
|
|
|
# check warning to ignore sharex / sharey
|
|
# this check should be done in the first function which
|
|
# passes multiple axes to plot, hist or boxplot
|
|
# location should be changed if other test is added
|
|
# which has earlier alphabetical order
|
|
with tm.assert_produces_warning(UserWarning):
|
|
fig, axes = self.plt.subplots(2, 2)
|
|
df.groupby("category").boxplot(column="height", return_type="axes", ax=axes)
|
|
self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(2, 2))
|
|
|
|
fig, axes = self.plt.subplots(2, 3)
|
|
with tm.assert_produces_warning(UserWarning):
|
|
returned = df.boxplot(
|
|
column=["height", "weight", "category"],
|
|
by="gender",
|
|
return_type="axes",
|
|
ax=axes[0],
|
|
)
|
|
returned = np.array(list(returned.values))
|
|
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
|
|
tm.assert_numpy_array_equal(returned, axes[0])
|
|
assert returned[0].figure is fig
|
|
|
|
# draw on second row
|
|
with tm.assert_produces_warning(UserWarning):
|
|
returned = df.groupby("classroom").boxplot(
|
|
column=["height", "weight", "category"], return_type="axes", ax=axes[1]
|
|
)
|
|
returned = np.array(list(returned.values))
|
|
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
|
|
tm.assert_numpy_array_equal(returned, axes[1])
|
|
assert returned[0].figure is fig
|
|
|
|
with pytest.raises(ValueError):
|
|
fig, axes = self.plt.subplots(2, 3)
|
|
# pass different number of axes from required
|
|
with tm.assert_produces_warning(UserWarning):
|
|
axes = df.groupby("classroom").boxplot(ax=axes)
|
|
|
|
def test_fontsize(self):
|
|
df = DataFrame({"a": [1, 2, 3, 4, 5, 6], "b": [0, 0, 0, 1, 1, 1]})
|
|
self._check_ticks_props(
|
|
df.boxplot("a", by="b", fontsize=16), xlabelsize=16, ylabelsize=16
|
|
)
|
|
|
|
@pytest.mark.parametrize(
|
|
"col, expected_xticklabel",
|
|
[
|
|
("v", ["(a, v)", "(b, v)", "(c, v)", "(d, v)", "(e, v)"]),
|
|
(["v"], ["(a, v)", "(b, v)", "(c, v)", "(d, v)", "(e, v)"]),
|
|
("v1", ["(a, v1)", "(b, v1)", "(c, v1)", "(d, v1)", "(e, v1)"]),
|
|
(
|
|
["v", "v1"],
|
|
[
|
|
"(a, v)",
|
|
"(a, v1)",
|
|
"(b, v)",
|
|
"(b, v1)",
|
|
"(c, v)",
|
|
"(c, v1)",
|
|
"(d, v)",
|
|
"(d, v1)",
|
|
"(e, v)",
|
|
"(e, v1)",
|
|
],
|
|
),
|
|
(
|
|
None,
|
|
[
|
|
"(a, v)",
|
|
"(a, v1)",
|
|
"(b, v)",
|
|
"(b, v1)",
|
|
"(c, v)",
|
|
"(c, v1)",
|
|
"(d, v)",
|
|
"(d, v1)",
|
|
"(e, v)",
|
|
"(e, v1)",
|
|
],
|
|
),
|
|
],
|
|
)
|
|
def test_groupby_boxplot_subplots_false(self, col, expected_xticklabel):
|
|
# GH 16748
|
|
df = DataFrame(
|
|
{
|
|
"cat": np.random.choice(list("abcde"), 100),
|
|
"v": np.random.rand(100),
|
|
"v1": np.random.rand(100),
|
|
}
|
|
)
|
|
grouped = df.groupby("cat")
|
|
|
|
axes = _check_plot_works(
|
|
grouped.boxplot, subplots=False, column=col, return_type="axes"
|
|
)
|
|
|
|
result_xticklabel = [x.get_text() for x in axes.get_xticklabels()]
|
|
assert expected_xticklabel == result_xticklabel
|
|
|
|
def test_boxplot_multiindex_column(self):
|
|
# GH 16748
|
|
arrays = [
|
|
["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
|
|
["one", "two", "one", "two", "one", "two", "one", "two"],
|
|
]
|
|
tuples = list(zip(*arrays))
|
|
index = MultiIndex.from_tuples(tuples, names=["first", "second"])
|
|
df = DataFrame(np.random.randn(3, 8), index=["A", "B", "C"], columns=index)
|
|
|
|
col = [("bar", "one"), ("bar", "two")]
|
|
axes = _check_plot_works(df.boxplot, column=col, return_type="axes")
|
|
|
|
expected_xticklabel = ["(bar, one)", "(bar, two)"]
|
|
result_xticklabel = [x.get_text() for x in axes.get_xticklabels()]
|
|
assert expected_xticklabel == result_xticklabel
|