projektAI/venv/Lib/site-packages/pandas/tests/plotting/test_datetimelike.py
2021-06-06 22:13:05 +02:00

1517 lines
54 KiB
Python

""" Test cases for time series specific (freq conversion, etc) """
from datetime import date, datetime, time, timedelta
import pickle
import sys
import numpy as np
import pytest
from pandas._libs.tslibs import BaseOffset, to_offset
import pandas.util._test_decorators as td
from pandas import DataFrame, Index, NaT, Series, isna, to_datetime
import pandas._testing as tm
from pandas.core.indexes.datetimes import DatetimeIndex, bdate_range, date_range
from pandas.core.indexes.period import Period, PeriodIndex, period_range
from pandas.core.indexes.timedeltas import timedelta_range
from pandas.tests.plotting.common import TestPlotBase
from pandas.tseries.offsets import WeekOfMonth
pytestmark = pytest.mark.slow
@td.skip_if_no_mpl
class TestTSPlot(TestPlotBase):
def setup_method(self, method):
TestPlotBase.setup_method(self, method)
self.freq = ["S", "T", "H", "D", "W", "M", "Q", "A"]
idx = [period_range("12/31/1999", freq=x, periods=100) for x in self.freq]
self.period_ser = [Series(np.random.randn(len(x)), x) for x in idx]
self.period_df = [
DataFrame(np.random.randn(len(x), 3), index=x, columns=["A", "B", "C"])
for x in idx
]
freq = ["S", "T", "H", "D", "W", "M", "Q-DEC", "A", "1B30Min"]
idx = [date_range("12/31/1999", freq=x, periods=100) for x in freq]
self.datetime_ser = [Series(np.random.randn(len(x)), x) for x in idx]
self.datetime_df = [
DataFrame(np.random.randn(len(x), 3), index=x, columns=["A", "B", "C"])
for x in idx
]
def teardown_method(self, method):
tm.close()
def test_ts_plot_with_tz(self, tz_aware_fixture):
# GH2877, GH17173, GH31205, GH31580
tz = tz_aware_fixture
index = date_range("1/1/2011", periods=2, freq="H", tz=tz)
ts = Series([188.5, 328.25], index=index)
with tm.assert_produces_warning(None):
_check_plot_works(ts.plot)
ax = ts.plot()
xdata = list(ax.get_lines())[0].get_xdata()
# Check first and last points' labels are correct
assert (xdata[0].hour, xdata[0].minute) == (0, 0)
assert (xdata[-1].hour, xdata[-1].minute) == (1, 0)
def test_fontsize_set_correctly(self):
# For issue #8765
df = DataFrame(np.random.randn(10, 9), index=range(10))
fig, ax = self.plt.subplots()
df.plot(fontsize=2, ax=ax)
for label in ax.get_xticklabels() + ax.get_yticklabels():
assert label.get_fontsize() == 2
def test_frame_inferred(self):
# inferred freq
idx = date_range("1/1/1987", freq="MS", periods=100)
idx = DatetimeIndex(idx.values, freq=None)
df = DataFrame(np.random.randn(len(idx), 3), index=idx)
_check_plot_works(df.plot)
# axes freq
idx = idx[0:40].union(idx[45:99])
df2 = DataFrame(np.random.randn(len(idx), 3), index=idx)
_check_plot_works(df2.plot)
# N > 1
idx = date_range("2008-1-1 00:15:00", freq="15T", periods=10)
idx = DatetimeIndex(idx.values, freq=None)
df = DataFrame(np.random.randn(len(idx), 3), index=idx)
_check_plot_works(df.plot)
def test_is_error_nozeroindex(self):
# GH11858
i = np.array([1, 2, 3])
a = DataFrame(i, index=i)
_check_plot_works(a.plot, xerr=a)
_check_plot_works(a.plot, yerr=a)
def test_nonnumeric_exclude(self):
idx = date_range("1/1/1987", freq="A", periods=3)
df = DataFrame({"A": ["x", "y", "z"], "B": [1, 2, 3]}, idx)
fig, ax = self.plt.subplots()
df.plot(ax=ax) # it works
assert len(ax.get_lines()) == 1 # B was plotted
self.plt.close(fig)
msg = "no numeric data to plot"
with pytest.raises(TypeError, match=msg):
df["A"].plot()
def test_tsplot(self):
_, ax = self.plt.subplots()
ts = tm.makeTimeSeries()
for s in self.period_ser:
_check_plot_works(s.plot, ax=ax)
for s in self.datetime_ser:
_check_plot_works(s.plot, ax=ax)
_, ax = self.plt.subplots()
ts.plot(style="k", ax=ax)
color = (0.0, 0.0, 0.0, 1)
assert color == ax.get_lines()[0].get_color()
def test_both_style_and_color(self):
ts = tm.makeTimeSeries()
msg = (
"Cannot pass 'style' string with a color symbol and 'color' "
"keyword argument. Please use one or the other or pass 'style' "
"without a color symbol"
)
with pytest.raises(ValueError, match=msg):
ts.plot(style="b-", color="#000099")
s = ts.reset_index(drop=True)
with pytest.raises(ValueError, match=msg):
s.plot(style="b-", color="#000099")
def test_high_freq(self):
freaks = ["ms", "us"]
for freq in freaks:
_, ax = self.plt.subplots()
rng = date_range("1/1/2012", periods=100, freq=freq)
ser = Series(np.random.randn(len(rng)), rng)
_check_plot_works(ser.plot, ax=ax)
def test_get_datevalue(self):
from pandas.plotting._matplotlib.converter import get_datevalue
assert get_datevalue(None, "D") is None
assert get_datevalue(1987, "A") == 1987
assert get_datevalue(Period(1987, "A"), "M") == Period("1987-12", "M").ordinal
assert get_datevalue("1/1/1987", "D") == Period("1987-1-1", "D").ordinal
def test_ts_plot_format_coord(self):
def check_format_of_first_point(ax, expected_string):
first_line = ax.get_lines()[0]
first_x = first_line.get_xdata()[0].ordinal
first_y = first_line.get_ydata()[0]
try:
assert expected_string == ax.format_coord(first_x, first_y)
except (ValueError):
pytest.skip(
"skipping test because issue forming test comparison GH7664"
)
annual = Series(1, index=date_range("2014-01-01", periods=3, freq="A-DEC"))
_, ax = self.plt.subplots()
annual.plot(ax=ax)
check_format_of_first_point(ax, "t = 2014 y = 1.000000")
# note this is added to the annual plot already in existence, and
# changes its freq field
daily = Series(1, index=date_range("2014-01-01", periods=3, freq="D"))
daily.plot(ax=ax)
check_format_of_first_point(ax, "t = 2014-01-01 y = 1.000000")
tm.close()
def test_line_plot_period_series(self):
for s in self.period_ser:
_check_plot_works(s.plot, s.index.freq)
@pytest.mark.parametrize(
"frqncy", ["1S", "3S", "5T", "7H", "4D", "8W", "11M", "3A"]
)
def test_line_plot_period_mlt_series(self, frqncy):
# test period index line plot for series with multiples (`mlt`) of the
# frequency (`frqncy`) rule code. tests resolution of issue #14763
idx = period_range("12/31/1999", freq=frqncy, periods=100)
s = Series(np.random.randn(len(idx)), idx)
_check_plot_works(s.plot, s.index.freq.rule_code)
def test_line_plot_datetime_series(self):
for s in self.datetime_ser:
_check_plot_works(s.plot, s.index.freq.rule_code)
def test_line_plot_period_frame(self):
for df in self.period_df:
_check_plot_works(df.plot, df.index.freq)
@pytest.mark.parametrize(
"frqncy", ["1S", "3S", "5T", "7H", "4D", "8W", "11M", "3A"]
)
def test_line_plot_period_mlt_frame(self, frqncy):
# test period index line plot for DataFrames with multiples (`mlt`)
# of the frequency (`frqncy`) rule code. tests resolution of issue
# #14763
idx = period_range("12/31/1999", freq=frqncy, periods=100)
df = DataFrame(np.random.randn(len(idx), 3), index=idx, columns=["A", "B", "C"])
freq = df.index.asfreq(df.index.freq.rule_code).freq
_check_plot_works(df.plot, freq)
def test_line_plot_datetime_frame(self):
for df in self.datetime_df:
freq = df.index.to_period(df.index.freq.rule_code).freq
_check_plot_works(df.plot, freq)
def test_line_plot_inferred_freq(self):
for ser in self.datetime_ser:
ser = Series(ser.values, Index(np.asarray(ser.index)))
_check_plot_works(ser.plot, ser.index.inferred_freq)
ser = ser[[0, 3, 5, 6]]
_check_plot_works(ser.plot)
def test_fake_inferred_business(self):
_, ax = self.plt.subplots()
rng = date_range("2001-1-1", "2001-1-10")
ts = Series(range(len(rng)), index=rng)
ts = ts[:3].append(ts[5:])
ts.plot(ax=ax)
assert not hasattr(ax, "freq")
def test_plot_offset_freq(self):
ser = tm.makeTimeSeries()
_check_plot_works(ser.plot)
dr = date_range(ser.index[0], freq="BQS", periods=10)
ser = Series(np.random.randn(len(dr)), index=dr)
_check_plot_works(ser.plot)
def test_plot_multiple_inferred_freq(self):
dr = Index([datetime(2000, 1, 1), datetime(2000, 1, 6), datetime(2000, 1, 11)])
ser = Series(np.random.randn(len(dr)), index=dr)
_check_plot_works(ser.plot)
def test_uhf(self):
import pandas.plotting._matplotlib.converter as conv
idx = date_range("2012-6-22 21:59:51.960928", freq="L", periods=500)
df = DataFrame(np.random.randn(len(idx), 2), index=idx)
_, ax = self.plt.subplots()
df.plot(ax=ax)
axis = ax.get_xaxis()
tlocs = axis.get_ticklocs()
tlabels = axis.get_ticklabels()
for loc, label in zip(tlocs, tlabels):
xp = conv._from_ordinal(loc).strftime("%H:%M:%S.%f")
rs = str(label.get_text())
if len(rs):
assert xp == rs
def test_irreg_hf(self):
idx = date_range("2012-6-22 21:59:51", freq="S", periods=100)
df = DataFrame(np.random.randn(len(idx), 2), index=idx)
irreg = df.iloc[[0, 1, 3, 4]]
_, ax = self.plt.subplots()
irreg.plot(ax=ax)
diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff()
sec = 1.0 / 24 / 60 / 60
assert (np.fabs(diffs[1:] - [sec, sec * 2, sec]) < 1e-8).all()
_, ax = self.plt.subplots()
df2 = df.copy()
df2.index = df.index.astype(object)
df2.plot(ax=ax)
diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff()
assert (np.fabs(diffs[1:] - sec) < 1e-8).all()
def test_irregular_datetime64_repr_bug(self):
ser = tm.makeTimeSeries()
ser = ser[[0, 1, 2, 7]]
_, ax = self.plt.subplots()
ret = ser.plot(ax=ax)
assert ret is not None
for rs, xp in zip(ax.get_lines()[0].get_xdata(), ser.index):
assert rs == xp
def test_business_freq(self):
bts = tm.makePeriodSeries()
_, ax = self.plt.subplots()
bts.plot(ax=ax)
assert ax.get_lines()[0].get_xydata()[0, 0] == bts.index[0].ordinal
idx = ax.get_lines()[0].get_xdata()
assert PeriodIndex(data=idx).freqstr == "B"
def test_business_freq_convert(self):
bts = tm.makeTimeSeries(300).asfreq("BM")
ts = bts.to_period("M")
_, ax = self.plt.subplots()
bts.plot(ax=ax)
assert ax.get_lines()[0].get_xydata()[0, 0] == ts.index[0].ordinal
idx = ax.get_lines()[0].get_xdata()
assert PeriodIndex(data=idx).freqstr == "M"
def test_freq_with_no_period_alias(self):
# GH34487
freq = WeekOfMonth()
bts = tm.makeTimeSeries(5).asfreq(freq)
_, ax = self.plt.subplots()
bts.plot(ax=ax)
idx = ax.get_lines()[0].get_xdata()
msg = "freq not specified and cannot be inferred"
with pytest.raises(ValueError, match=msg):
PeriodIndex(data=idx)
def test_nonzero_base(self):
# GH2571
idx = date_range("2012-12-20", periods=24, freq="H") + timedelta(minutes=30)
df = DataFrame(np.arange(24), index=idx)
_, ax = self.plt.subplots()
df.plot(ax=ax)
rs = ax.get_lines()[0].get_xdata()
assert not Index(rs).is_normalized
def test_dataframe(self):
bts = DataFrame({"a": tm.makeTimeSeries()})
_, ax = self.plt.subplots()
bts.plot(ax=ax)
idx = ax.get_lines()[0].get_xdata()
tm.assert_index_equal(bts.index.to_period(), PeriodIndex(idx))
def test_axis_limits(self):
def _test(ax):
xlim = ax.get_xlim()
ax.set_xlim(xlim[0] - 5, xlim[1] + 10)
result = ax.get_xlim()
assert result[0] == xlim[0] - 5
assert result[1] == xlim[1] + 10
# string
expected = (Period("1/1/2000", ax.freq), Period("4/1/2000", ax.freq))
ax.set_xlim("1/1/2000", "4/1/2000")
result = ax.get_xlim()
assert int(result[0]) == expected[0].ordinal
assert int(result[1]) == expected[1].ordinal
# datetime
expected = (Period("1/1/2000", ax.freq), Period("4/1/2000", ax.freq))
ax.set_xlim(datetime(2000, 1, 1), datetime(2000, 4, 1))
result = ax.get_xlim()
assert int(result[0]) == expected[0].ordinal
assert int(result[1]) == expected[1].ordinal
fig = ax.get_figure()
self.plt.close(fig)
ser = tm.makeTimeSeries()
_, ax = self.plt.subplots()
ser.plot(ax=ax)
_test(ax)
_, ax = self.plt.subplots()
df = DataFrame({"a": ser, "b": ser + 1})
df.plot(ax=ax)
_test(ax)
df = DataFrame({"a": ser, "b": ser + 1})
axes = df.plot(subplots=True)
for ax in axes:
_test(ax)
def test_get_finder(self):
import pandas.plotting._matplotlib.converter as conv
assert conv.get_finder(to_offset("B")) == conv._daily_finder
assert conv.get_finder(to_offset("D")) == conv._daily_finder
assert conv.get_finder(to_offset("M")) == conv._monthly_finder
assert conv.get_finder(to_offset("Q")) == conv._quarterly_finder
assert conv.get_finder(to_offset("A")) == conv._annual_finder
assert conv.get_finder(to_offset("W")) == conv._daily_finder
def test_finder_daily(self):
day_lst = [10, 40, 252, 400, 950, 2750, 10000]
xpl1 = xpl2 = [Period("1999-1-1", freq="B").ordinal] * len(day_lst)
rs1 = []
rs2 = []
for i, n in enumerate(day_lst):
rng = bdate_range("1999-1-1", periods=n)
ser = Series(np.random.randn(len(rng)), rng)
_, ax = self.plt.subplots()
ser.plot(ax=ax)
xaxis = ax.get_xaxis()
rs1.append(xaxis.get_majorticklocs()[0])
vmin, vmax = ax.get_xlim()
ax.set_xlim(vmin + 0.9, vmax)
rs2.append(xaxis.get_majorticklocs()[0])
self.plt.close(ax.get_figure())
assert rs1 == xpl1
assert rs2 == xpl2
def test_finder_quarterly(self):
yrs = [3.5, 11]
xpl1 = xpl2 = [Period("1988Q1").ordinal] * len(yrs)
rs1 = []
rs2 = []
for i, n in enumerate(yrs):
rng = period_range("1987Q2", periods=int(n * 4), freq="Q")
ser = Series(np.random.randn(len(rng)), rng)
_, ax = self.plt.subplots()
ser.plot(ax=ax)
xaxis = ax.get_xaxis()
rs1.append(xaxis.get_majorticklocs()[0])
(vmin, vmax) = ax.get_xlim()
ax.set_xlim(vmin + 0.9, vmax)
rs2.append(xaxis.get_majorticklocs()[0])
self.plt.close(ax.get_figure())
assert rs1 == xpl1
assert rs2 == xpl2
def test_finder_monthly(self):
yrs = [1.15, 2.5, 4, 11]
xpl1 = xpl2 = [Period("Jan 1988").ordinal] * len(yrs)
rs1 = []
rs2 = []
for i, n in enumerate(yrs):
rng = period_range("1987Q2", periods=int(n * 12), freq="M")
ser = Series(np.random.randn(len(rng)), rng)
_, ax = self.plt.subplots()
ser.plot(ax=ax)
xaxis = ax.get_xaxis()
rs1.append(xaxis.get_majorticklocs()[0])
vmin, vmax = ax.get_xlim()
ax.set_xlim(vmin + 0.9, vmax)
rs2.append(xaxis.get_majorticklocs()[0])
self.plt.close(ax.get_figure())
assert rs1 == xpl1
assert rs2 == xpl2
def test_finder_monthly_long(self):
rng = period_range("1988Q1", periods=24 * 12, freq="M")
ser = Series(np.random.randn(len(rng)), rng)
_, ax = self.plt.subplots()
ser.plot(ax=ax)
xaxis = ax.get_xaxis()
rs = xaxis.get_majorticklocs()[0]
xp = Period("1989Q1", "M").ordinal
assert rs == xp
def test_finder_annual(self):
xp = [1987, 1988, 1990, 1990, 1995, 2020, 2070, 2170]
xp = [Period(x, freq="A").ordinal for x in xp]
rs = []
for i, nyears in enumerate([5, 10, 19, 49, 99, 199, 599, 1001]):
rng = period_range("1987", periods=nyears, freq="A")
ser = Series(np.random.randn(len(rng)), rng)
_, ax = self.plt.subplots()
ser.plot(ax=ax)
xaxis = ax.get_xaxis()
rs.append(xaxis.get_majorticklocs()[0])
self.plt.close(ax.get_figure())
assert rs == xp
def test_finder_minutely(self):
nminutes = 50 * 24 * 60
rng = date_range("1/1/1999", freq="Min", periods=nminutes)
ser = Series(np.random.randn(len(rng)), rng)
_, ax = self.plt.subplots()
ser.plot(ax=ax)
xaxis = ax.get_xaxis()
rs = xaxis.get_majorticklocs()[0]
xp = Period("1/1/1999", freq="Min").ordinal
assert rs == xp
def test_finder_hourly(self):
nhours = 23
rng = date_range("1/1/1999", freq="H", periods=nhours)
ser = Series(np.random.randn(len(rng)), rng)
_, ax = self.plt.subplots()
ser.plot(ax=ax)
xaxis = ax.get_xaxis()
rs = xaxis.get_majorticklocs()[0]
xp = Period("1/1/1999", freq="H").ordinal
assert rs == xp
def test_gaps(self):
ts = tm.makeTimeSeries()
ts[5:25] = np.nan
_, ax = self.plt.subplots()
ts.plot(ax=ax)
lines = ax.get_lines()
assert len(lines) == 1
line = lines[0]
data = line.get_xydata()
if self.mpl_ge_3_0_0 or not self.mpl_ge_2_2_3:
data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)
assert isinstance(data, np.ma.core.MaskedArray)
mask = data.mask
assert mask[5:25, 1].all()
self.plt.close(ax.get_figure())
# irregular
ts = tm.makeTimeSeries()
ts = ts[[0, 1, 2, 5, 7, 9, 12, 15, 20]]
ts[2:5] = np.nan
_, ax = self.plt.subplots()
ax = ts.plot(ax=ax)
lines = ax.get_lines()
assert len(lines) == 1
line = lines[0]
data = line.get_xydata()
if self.mpl_ge_3_0_0 or not self.mpl_ge_2_2_3:
data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)
assert isinstance(data, np.ma.core.MaskedArray)
mask = data.mask
assert mask[2:5, 1].all()
self.plt.close(ax.get_figure())
# non-ts
idx = [0, 1, 2, 5, 7, 9, 12, 15, 20]
ser = Series(np.random.randn(len(idx)), idx)
ser[2:5] = np.nan
_, ax = self.plt.subplots()
ser.plot(ax=ax)
lines = ax.get_lines()
assert len(lines) == 1
line = lines[0]
data = line.get_xydata()
if self.mpl_ge_3_0_0 or not self.mpl_ge_2_2_3:
data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)
assert isinstance(data, np.ma.core.MaskedArray)
mask = data.mask
assert mask[2:5, 1].all()
def test_gap_upsample(self):
low = tm.makeTimeSeries()
low[5:25] = np.nan
_, ax = self.plt.subplots()
low.plot(ax=ax)
idxh = date_range(low.index[0], low.index[-1], freq="12h")
s = Series(np.random.randn(len(idxh)), idxh)
s.plot(secondary_y=True)
lines = ax.get_lines()
assert len(lines) == 1
assert len(ax.right_ax.get_lines()) == 1
line = lines[0]
data = line.get_xydata()
if self.mpl_ge_3_0_0 or not self.mpl_ge_2_2_3:
data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)
assert isinstance(data, np.ma.core.MaskedArray)
mask = data.mask
assert mask[5:25, 1].all()
def test_secondary_y(self):
ser = Series(np.random.randn(10))
ser2 = Series(np.random.randn(10))
fig, _ = self.plt.subplots()
ax = ser.plot(secondary_y=True)
assert hasattr(ax, "left_ax")
assert not hasattr(ax, "right_ax")
axes = fig.get_axes()
line = ax.get_lines()[0]
xp = Series(line.get_ydata(), line.get_xdata())
tm.assert_series_equal(ser, xp)
assert ax.get_yaxis().get_ticks_position() == "right"
assert not axes[0].get_yaxis().get_visible()
self.plt.close(fig)
_, ax2 = self.plt.subplots()
ser2.plot(ax=ax2)
assert ax2.get_yaxis().get_ticks_position() == self.default_tick_position
self.plt.close(ax2.get_figure())
ax = ser2.plot()
ax2 = ser.plot(secondary_y=True)
assert ax.get_yaxis().get_visible()
assert not hasattr(ax, "left_ax")
assert hasattr(ax, "right_ax")
assert hasattr(ax2, "left_ax")
assert not hasattr(ax2, "right_ax")
def test_secondary_y_ts(self):
idx = date_range("1/1/2000", periods=10)
ser = Series(np.random.randn(10), idx)
ser2 = Series(np.random.randn(10), idx)
fig, _ = self.plt.subplots()
ax = ser.plot(secondary_y=True)
assert hasattr(ax, "left_ax")
assert not hasattr(ax, "right_ax")
axes = fig.get_axes()
line = ax.get_lines()[0]
xp = Series(line.get_ydata(), line.get_xdata()).to_timestamp()
tm.assert_series_equal(ser, xp)
assert ax.get_yaxis().get_ticks_position() == "right"
assert not axes[0].get_yaxis().get_visible()
self.plt.close(fig)
_, ax2 = self.plt.subplots()
ser2.plot(ax=ax2)
assert ax2.get_yaxis().get_ticks_position() == self.default_tick_position
self.plt.close(ax2.get_figure())
ax = ser2.plot()
ax2 = ser.plot(secondary_y=True)
assert ax.get_yaxis().get_visible()
@td.skip_if_no_scipy
def test_secondary_kde(self):
ser = Series(np.random.randn(10))
fig, ax = self.plt.subplots()
ax = ser.plot(secondary_y=True, kind="density", ax=ax)
assert hasattr(ax, "left_ax")
assert not hasattr(ax, "right_ax")
axes = fig.get_axes()
assert axes[1].get_yaxis().get_ticks_position() == "right"
def test_secondary_bar(self):
ser = Series(np.random.randn(10))
fig, ax = self.plt.subplots()
ser.plot(secondary_y=True, kind="bar", ax=ax)
axes = fig.get_axes()
assert axes[1].get_yaxis().get_ticks_position() == "right"
def test_secondary_frame(self):
df = DataFrame(np.random.randn(5, 3), columns=["a", "b", "c"])
axes = df.plot(secondary_y=["a", "c"], subplots=True)
assert axes[0].get_yaxis().get_ticks_position() == "right"
assert axes[1].get_yaxis().get_ticks_position() == self.default_tick_position
assert axes[2].get_yaxis().get_ticks_position() == "right"
def test_secondary_bar_frame(self):
df = DataFrame(np.random.randn(5, 3), columns=["a", "b", "c"])
axes = df.plot(kind="bar", secondary_y=["a", "c"], subplots=True)
assert axes[0].get_yaxis().get_ticks_position() == "right"
assert axes[1].get_yaxis().get_ticks_position() == self.default_tick_position
assert axes[2].get_yaxis().get_ticks_position() == "right"
def test_mixed_freq_regular_first(self):
# TODO
s1 = tm.makeTimeSeries()
s2 = s1[[0, 5, 10, 11, 12, 13, 14, 15]]
# it works!
_, ax = self.plt.subplots()
s1.plot(ax=ax)
ax2 = s2.plot(style="g", ax=ax)
lines = ax2.get_lines()
idx1 = PeriodIndex(lines[0].get_xdata())
idx2 = PeriodIndex(lines[1].get_xdata())
tm.assert_index_equal(idx1, s1.index.to_period("B"))
tm.assert_index_equal(idx2, s2.index.to_period("B"))
left, right = ax2.get_xlim()
pidx = s1.index.to_period()
assert left <= pidx[0].ordinal
assert right >= pidx[-1].ordinal
def test_mixed_freq_irregular_first(self):
s1 = tm.makeTimeSeries()
s2 = s1[[0, 5, 10, 11, 12, 13, 14, 15]]
_, ax = self.plt.subplots()
s2.plot(style="g", ax=ax)
s1.plot(ax=ax)
assert not hasattr(ax, "freq")
lines = ax.get_lines()
x1 = lines[0].get_xdata()
tm.assert_numpy_array_equal(x1, s2.index.astype(object).values)
x2 = lines[1].get_xdata()
tm.assert_numpy_array_equal(x2, s1.index.astype(object).values)
def test_mixed_freq_regular_first_df(self):
# GH 9852
s1 = tm.makeTimeSeries().to_frame()
s2 = s1.iloc[[0, 5, 10, 11, 12, 13, 14, 15], :]
_, ax = self.plt.subplots()
s1.plot(ax=ax)
ax2 = s2.plot(style="g", ax=ax)
lines = ax2.get_lines()
idx1 = PeriodIndex(lines[0].get_xdata())
idx2 = PeriodIndex(lines[1].get_xdata())
assert idx1.equals(s1.index.to_period("B"))
assert idx2.equals(s2.index.to_period("B"))
left, right = ax2.get_xlim()
pidx = s1.index.to_period()
assert left <= pidx[0].ordinal
assert right >= pidx[-1].ordinal
def test_mixed_freq_irregular_first_df(self):
# GH 9852
s1 = tm.makeTimeSeries().to_frame()
s2 = s1.iloc[[0, 5, 10, 11, 12, 13, 14, 15], :]
_, ax = self.plt.subplots()
s2.plot(style="g", ax=ax)
s1.plot(ax=ax)
assert not hasattr(ax, "freq")
lines = ax.get_lines()
x1 = lines[0].get_xdata()
tm.assert_numpy_array_equal(x1, s2.index.astype(object).values)
x2 = lines[1].get_xdata()
tm.assert_numpy_array_equal(x2, s1.index.astype(object).values)
def test_mixed_freq_hf_first(self):
idxh = date_range("1/1/1999", periods=365, freq="D")
idxl = date_range("1/1/1999", periods=12, freq="M")
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
_, ax = self.plt.subplots()
high.plot(ax=ax)
low.plot(ax=ax)
for line in ax.get_lines():
assert PeriodIndex(data=line.get_xdata()).freq == "D"
def test_mixed_freq_alignment(self):
ts_ind = date_range("2012-01-01 13:00", "2012-01-02", freq="H")
ts_data = np.random.randn(12)
ts = Series(ts_data, index=ts_ind)
ts2 = ts.asfreq("T").interpolate()
_, ax = self.plt.subplots()
ax = ts.plot(ax=ax)
ts2.plot(style="r", ax=ax)
assert ax.lines[0].get_xdata()[0] == ax.lines[1].get_xdata()[0]
def test_mixed_freq_lf_first(self):
idxh = date_range("1/1/1999", periods=365, freq="D")
idxl = date_range("1/1/1999", periods=12, freq="M")
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
_, ax = self.plt.subplots()
low.plot(legend=True, ax=ax)
high.plot(legend=True, ax=ax)
for line in ax.get_lines():
assert PeriodIndex(data=line.get_xdata()).freq == "D"
leg = ax.get_legend()
assert len(leg.texts) == 2
self.plt.close(ax.get_figure())
idxh = date_range("1/1/1999", periods=240, freq="T")
idxl = date_range("1/1/1999", periods=4, freq="H")
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
_, ax = self.plt.subplots()
low.plot(ax=ax)
high.plot(ax=ax)
for line in ax.get_lines():
assert PeriodIndex(data=line.get_xdata()).freq == "T"
def test_mixed_freq_irreg_period(self):
ts = tm.makeTimeSeries()
irreg = ts[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16, 17, 18, 29]]
rng = period_range("1/3/2000", periods=30, freq="B")
ps = Series(np.random.randn(len(rng)), rng)
_, ax = self.plt.subplots()
irreg.plot(ax=ax)
ps.plot(ax=ax)
def test_mixed_freq_shared_ax(self):
# GH13341, using sharex=True
idx1 = date_range("2015-01-01", periods=3, freq="M")
idx2 = idx1[:1].union(idx1[2:])
s1 = Series(range(len(idx1)), idx1)
s2 = Series(range(len(idx2)), idx2)
fig, (ax1, ax2) = self.plt.subplots(nrows=2, sharex=True)
s1.plot(ax=ax1)
s2.plot(ax=ax2)
assert ax1.freq == "M"
assert ax2.freq == "M"
assert ax1.lines[0].get_xydata()[0, 0] == ax2.lines[0].get_xydata()[0, 0]
# using twinx
fig, ax1 = self.plt.subplots()
ax2 = ax1.twinx()
s1.plot(ax=ax1)
s2.plot(ax=ax2)
assert ax1.lines[0].get_xydata()[0, 0] == ax2.lines[0].get_xydata()[0, 0]
# TODO (GH14330, GH14322)
# plotting the irregular first does not yet work
# fig, ax1 = plt.subplots()
# ax2 = ax1.twinx()
# s2.plot(ax=ax1)
# s1.plot(ax=ax2)
# assert (ax1.lines[0].get_xydata()[0, 0] ==
# ax2.lines[0].get_xydata()[0, 0])
def test_nat_handling(self):
_, ax = self.plt.subplots()
dti = DatetimeIndex(["2015-01-01", NaT, "2015-01-03"])
s = Series(range(len(dti)), dti)
s.plot(ax=ax)
xdata = ax.get_lines()[0].get_xdata()
# plot x data is bounded by index values
assert s.index.min() <= Series(xdata).min()
assert Series(xdata).max() <= s.index.max()
def test_to_weekly_resampling(self):
idxh = date_range("1/1/1999", periods=52, freq="W")
idxl = date_range("1/1/1999", periods=12, freq="M")
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
_, ax = self.plt.subplots()
high.plot(ax=ax)
low.plot(ax=ax)
for line in ax.get_lines():
assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq
def test_from_weekly_resampling(self):
idxh = date_range("1/1/1999", periods=52, freq="W")
idxl = date_range("1/1/1999", periods=12, freq="M")
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
_, ax = self.plt.subplots()
low.plot(ax=ax)
high.plot(ax=ax)
expected_h = idxh.to_period().asi8.astype(np.float64)
expected_l = np.array(
[1514, 1519, 1523, 1527, 1531, 1536, 1540, 1544, 1549, 1553, 1558, 1562],
dtype=np.float64,
)
for line in ax.get_lines():
assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq
xdata = line.get_xdata(orig=False)
if len(xdata) == 12: # idxl lines
tm.assert_numpy_array_equal(xdata, expected_l)
else:
tm.assert_numpy_array_equal(xdata, expected_h)
tm.close()
def test_from_resampling_area_line_mixed(self):
idxh = date_range("1/1/1999", periods=52, freq="W")
idxl = date_range("1/1/1999", periods=12, freq="M")
high = DataFrame(np.random.rand(len(idxh), 3), index=idxh, columns=[0, 1, 2])
low = DataFrame(np.random.rand(len(idxl), 3), index=idxl, columns=[0, 1, 2])
# low to high
for kind1, kind2 in [("line", "area"), ("area", "line")]:
_, ax = self.plt.subplots()
low.plot(kind=kind1, stacked=True, ax=ax)
high.plot(kind=kind2, stacked=True, ax=ax)
# check low dataframe result
expected_x = np.array(
[
1514,
1519,
1523,
1527,
1531,
1536,
1540,
1544,
1549,
1553,
1558,
1562,
],
dtype=np.float64,
)
expected_y = np.zeros(len(expected_x), dtype=np.float64)
for i in range(3):
line = ax.lines[i]
assert PeriodIndex(line.get_xdata()).freq == idxh.freq
tm.assert_numpy_array_equal(line.get_xdata(orig=False), expected_x)
# check stacked values are correct
expected_y += low[i].values
tm.assert_numpy_array_equal(line.get_ydata(orig=False), expected_y)
# check high dataframe result
expected_x = idxh.to_period().asi8.astype(np.float64)
expected_y = np.zeros(len(expected_x), dtype=np.float64)
for i in range(3):
line = ax.lines[3 + i]
assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq
tm.assert_numpy_array_equal(line.get_xdata(orig=False), expected_x)
expected_y += high[i].values
tm.assert_numpy_array_equal(line.get_ydata(orig=False), expected_y)
# high to low
for kind1, kind2 in [("line", "area"), ("area", "line")]:
_, ax = self.plt.subplots()
high.plot(kind=kind1, stacked=True, ax=ax)
low.plot(kind=kind2, stacked=True, ax=ax)
# check high dataframe result
expected_x = idxh.to_period().asi8.astype(np.float64)
expected_y = np.zeros(len(expected_x), dtype=np.float64)
for i in range(3):
line = ax.lines[i]
assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq
tm.assert_numpy_array_equal(line.get_xdata(orig=False), expected_x)
expected_y += high[i].values
tm.assert_numpy_array_equal(line.get_ydata(orig=False), expected_y)
# check low dataframe result
expected_x = np.array(
[
1514,
1519,
1523,
1527,
1531,
1536,
1540,
1544,
1549,
1553,
1558,
1562,
],
dtype=np.float64,
)
expected_y = np.zeros(len(expected_x), dtype=np.float64)
for i in range(3):
lines = ax.lines[3 + i]
assert PeriodIndex(data=lines.get_xdata()).freq == idxh.freq
tm.assert_numpy_array_equal(lines.get_xdata(orig=False), expected_x)
expected_y += low[i].values
tm.assert_numpy_array_equal(lines.get_ydata(orig=False), expected_y)
def test_mixed_freq_second_millisecond(self):
# GH 7772, GH 7760
idxh = date_range("2014-07-01 09:00", freq="S", periods=50)
idxl = date_range("2014-07-01 09:00", freq="100L", periods=500)
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
# high to low
_, ax = self.plt.subplots()
high.plot(ax=ax)
low.plot(ax=ax)
assert len(ax.get_lines()) == 2
for line in ax.get_lines():
assert PeriodIndex(data=line.get_xdata()).freq == "L"
tm.close()
# low to high
_, ax = self.plt.subplots()
low.plot(ax=ax)
high.plot(ax=ax)
assert len(ax.get_lines()) == 2
for line in ax.get_lines():
assert PeriodIndex(data=line.get_xdata()).freq == "L"
def test_irreg_dtypes(self):
# date
idx = [date(2000, 1, 1), date(2000, 1, 5), date(2000, 1, 20)]
df = DataFrame(np.random.randn(len(idx), 3), Index(idx, dtype=object))
_check_plot_works(df.plot)
# np.datetime64
idx = date_range("1/1/2000", periods=10)
idx = idx[[0, 2, 5, 9]].astype(object)
df = DataFrame(np.random.randn(len(idx), 3), idx)
_, ax = self.plt.subplots()
_check_plot_works(df.plot, ax=ax)
def test_time(self):
t = datetime(1, 1, 1, 3, 30, 0)
deltas = np.random.randint(1, 20, 3).cumsum()
ts = np.array([(t + timedelta(minutes=int(x))).time() for x in deltas])
df = DataFrame(
{"a": np.random.randn(len(ts)), "b": np.random.randn(len(ts))}, index=ts
)
fig, ax = self.plt.subplots()
df.plot(ax=ax)
# verify tick labels
ticks = ax.get_xticks()
labels = ax.get_xticklabels()
for t, l in zip(ticks, labels):
m, s = divmod(int(t), 60)
h, m = divmod(m, 60)
rs = l.get_text()
if len(rs) > 0:
if s != 0:
xp = time(h, m, s).strftime("%H:%M:%S")
else:
xp = time(h, m, s).strftime("%H:%M")
assert xp == rs
def test_time_change_xlim(self):
t = datetime(1, 1, 1, 3, 30, 0)
deltas = np.random.randint(1, 20, 3).cumsum()
ts = np.array([(t + timedelta(minutes=int(x))).time() for x in deltas])
df = DataFrame(
{"a": np.random.randn(len(ts)), "b": np.random.randn(len(ts))}, index=ts
)
fig, ax = self.plt.subplots()
df.plot(ax=ax)
# verify tick labels
ticks = ax.get_xticks()
labels = ax.get_xticklabels()
for t, l in zip(ticks, labels):
m, s = divmod(int(t), 60)
h, m = divmod(m, 60)
rs = l.get_text()
if len(rs) > 0:
if s != 0:
xp = time(h, m, s).strftime("%H:%M:%S")
else:
xp = time(h, m, s).strftime("%H:%M")
assert xp == rs
# change xlim
ax.set_xlim("1:30", "5:00")
# check tick labels again
ticks = ax.get_xticks()
labels = ax.get_xticklabels()
for t, l in zip(ticks, labels):
m, s = divmod(int(t), 60)
h, m = divmod(m, 60)
rs = l.get_text()
if len(rs) > 0:
if s != 0:
xp = time(h, m, s).strftime("%H:%M:%S")
else:
xp = time(h, m, s).strftime("%H:%M")
assert xp == rs
def test_time_musec(self):
t = datetime(1, 1, 1, 3, 30, 0)
deltas = np.random.randint(1, 20, 3).cumsum()
ts = np.array([(t + timedelta(microseconds=int(x))).time() for x in deltas])
df = DataFrame(
{"a": np.random.randn(len(ts)), "b": np.random.randn(len(ts))}, index=ts
)
fig, ax = self.plt.subplots()
ax = df.plot(ax=ax)
# verify tick labels
ticks = ax.get_xticks()
labels = ax.get_xticklabels()
for t, l in zip(ticks, labels):
m, s = divmod(int(t), 60)
us = int(round((t - int(t)) * 1e6))
h, m = divmod(m, 60)
rs = l.get_text()
if len(rs) > 0:
if (us % 1000) != 0:
xp = time(h, m, s, us).strftime("%H:%M:%S.%f")
elif (us // 1000) != 0:
xp = time(h, m, s, us).strftime("%H:%M:%S.%f")[:-3]
elif s != 0:
xp = time(h, m, s, us).strftime("%H:%M:%S")
else:
xp = time(h, m, s, us).strftime("%H:%M")
assert xp == rs
def test_secondary_upsample(self):
idxh = date_range("1/1/1999", periods=365, freq="D")
idxl = date_range("1/1/1999", periods=12, freq="M")
high = Series(np.random.randn(len(idxh)), idxh)
low = Series(np.random.randn(len(idxl)), idxl)
_, ax = self.plt.subplots()
low.plot(ax=ax)
ax = high.plot(secondary_y=True, ax=ax)
for line in ax.get_lines():
assert PeriodIndex(line.get_xdata()).freq == "D"
assert hasattr(ax, "left_ax")
assert not hasattr(ax, "right_ax")
for line in ax.left_ax.get_lines():
assert PeriodIndex(line.get_xdata()).freq == "D"
def test_secondary_legend(self):
fig = self.plt.figure()
ax = fig.add_subplot(211)
# ts
df = tm.makeTimeDataFrame()
df.plot(secondary_y=["A", "B"], ax=ax)
leg = ax.get_legend()
assert len(leg.get_lines()) == 4
assert leg.get_texts()[0].get_text() == "A (right)"
assert leg.get_texts()[1].get_text() == "B (right)"
assert leg.get_texts()[2].get_text() == "C"
assert leg.get_texts()[3].get_text() == "D"
assert ax.right_ax.get_legend() is None
colors = set()
for line in leg.get_lines():
colors.add(line.get_color())
# TODO: color cycle problems
assert len(colors) == 4
self.plt.close(fig)
fig = self.plt.figure()
ax = fig.add_subplot(211)
df.plot(secondary_y=["A", "C"], mark_right=False, ax=ax)
leg = ax.get_legend()
assert len(leg.get_lines()) == 4
assert leg.get_texts()[0].get_text() == "A"
assert leg.get_texts()[1].get_text() == "B"
assert leg.get_texts()[2].get_text() == "C"
assert leg.get_texts()[3].get_text() == "D"
self.plt.close(fig)
fig, ax = self.plt.subplots()
df.plot(kind="bar", secondary_y=["A"], ax=ax)
leg = ax.get_legend()
assert leg.get_texts()[0].get_text() == "A (right)"
assert leg.get_texts()[1].get_text() == "B"
self.plt.close(fig)
fig, ax = self.plt.subplots()
df.plot(kind="bar", secondary_y=["A"], mark_right=False, ax=ax)
leg = ax.get_legend()
assert leg.get_texts()[0].get_text() == "A"
assert leg.get_texts()[1].get_text() == "B"
self.plt.close(fig)
fig = self.plt.figure()
ax = fig.add_subplot(211)
df = tm.makeTimeDataFrame()
ax = df.plot(secondary_y=["C", "D"], ax=ax)
leg = ax.get_legend()
assert len(leg.get_lines()) == 4
assert ax.right_ax.get_legend() is None
colors = set()
for line in leg.get_lines():
colors.add(line.get_color())
# TODO: color cycle problems
assert len(colors) == 4
self.plt.close(fig)
# non-ts
df = tm.makeDataFrame()
fig = self.plt.figure()
ax = fig.add_subplot(211)
ax = df.plot(secondary_y=["A", "B"], ax=ax)
leg = ax.get_legend()
assert len(leg.get_lines()) == 4
assert ax.right_ax.get_legend() is None
colors = set()
for line in leg.get_lines():
colors.add(line.get_color())
# TODO: color cycle problems
assert len(colors) == 4
self.plt.close()
fig = self.plt.figure()
ax = fig.add_subplot(211)
ax = df.plot(secondary_y=["C", "D"], ax=ax)
leg = ax.get_legend()
assert len(leg.get_lines()) == 4
assert ax.right_ax.get_legend() is None
colors = set()
for line in leg.get_lines():
colors.add(line.get_color())
# TODO: color cycle problems
assert len(colors) == 4
def test_format_date_axis(self):
rng = date_range("1/1/2012", periods=12, freq="M")
df = DataFrame(np.random.randn(len(rng), 3), rng)
_, ax = self.plt.subplots()
ax = df.plot(ax=ax)
xaxis = ax.get_xaxis()
for line in xaxis.get_ticklabels():
if len(line.get_text()) > 0:
assert line.get_rotation() == 30
def test_ax_plot(self):
x = date_range(start="2012-01-02", periods=10, freq="D")
y = list(range(len(x)))
_, ax = self.plt.subplots()
lines = ax.plot(x, y, label="Y")
tm.assert_index_equal(DatetimeIndex(lines[0].get_xdata()), x)
def test_mpl_nopandas(self):
dates = [date(2008, 12, 31), date(2009, 1, 31)]
values1 = np.arange(10.0, 11.0, 0.5)
values2 = np.arange(11.0, 12.0, 0.5)
kw = {"fmt": "-", "lw": 4}
_, ax = self.plt.subplots()
ax.plot_date([x.toordinal() for x in dates], values1, **kw)
ax.plot_date([x.toordinal() for x in dates], values2, **kw)
line1, line2 = ax.get_lines()
exp = np.array([x.toordinal() for x in dates], dtype=np.float64)
tm.assert_numpy_array_equal(line1.get_xydata()[:, 0], exp)
exp = np.array([x.toordinal() for x in dates], dtype=np.float64)
tm.assert_numpy_array_equal(line2.get_xydata()[:, 0], exp)
def test_irregular_ts_shared_ax_xlim(self):
# GH 2960
from pandas.plotting._matplotlib.converter import DatetimeConverter
ts = tm.makeTimeSeries()[:20]
ts_irregular = ts[[1, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 17, 18]]
# plot the left section of the irregular series, then the right section
_, ax = self.plt.subplots()
ts_irregular[:5].plot(ax=ax)
ts_irregular[5:].plot(ax=ax)
# check that axis limits are correct
left, right = ax.get_xlim()
assert left <= DatetimeConverter.convert(ts_irregular.index.min(), "", ax)
assert right >= DatetimeConverter.convert(ts_irregular.index.max(), "", ax)
def test_secondary_y_non_ts_xlim(self):
# GH 3490 - non-timeseries with secondary y
index_1 = [1, 2, 3, 4]
index_2 = [5, 6, 7, 8]
s1 = Series(1, index=index_1)
s2 = Series(2, index=index_2)
_, ax = self.plt.subplots()
s1.plot(ax=ax)
left_before, right_before = ax.get_xlim()
s2.plot(secondary_y=True, ax=ax)
left_after, right_after = ax.get_xlim()
assert left_before >= left_after
assert right_before < right_after
def test_secondary_y_regular_ts_xlim(self):
# GH 3490 - regular-timeseries with secondary y
index_1 = date_range(start="2000-01-01", periods=4, freq="D")
index_2 = date_range(start="2000-01-05", periods=4, freq="D")
s1 = Series(1, index=index_1)
s2 = Series(2, index=index_2)
_, ax = self.plt.subplots()
s1.plot(ax=ax)
left_before, right_before = ax.get_xlim()
s2.plot(secondary_y=True, ax=ax)
left_after, right_after = ax.get_xlim()
assert left_before >= left_after
assert right_before < right_after
def test_secondary_y_mixed_freq_ts_xlim(self):
# GH 3490 - mixed frequency timeseries with secondary y
rng = date_range("2000-01-01", periods=10000, freq="min")
ts = Series(1, index=rng)
_, ax = self.plt.subplots()
ts.plot(ax=ax)
left_before, right_before = ax.get_xlim()
ts.resample("D").mean().plot(secondary_y=True, ax=ax)
left_after, right_after = ax.get_xlim()
# a downsample should not have changed either limit
assert left_before == left_after
assert right_before == right_after
def test_secondary_y_irregular_ts_xlim(self):
# GH 3490 - irregular-timeseries with secondary y
from pandas.plotting._matplotlib.converter import DatetimeConverter
ts = tm.makeTimeSeries()[:20]
ts_irregular = ts[[1, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 17, 18]]
_, ax = self.plt.subplots()
ts_irregular[:5].plot(ax=ax)
# plot higher-x values on secondary axis
ts_irregular[5:].plot(secondary_y=True, ax=ax)
# ensure secondary limits aren't overwritten by plot on primary
ts_irregular[:5].plot(ax=ax)
left, right = ax.get_xlim()
assert left <= DatetimeConverter.convert(ts_irregular.index.min(), "", ax)
assert right >= DatetimeConverter.convert(ts_irregular.index.max(), "", ax)
def test_plot_outofbounds_datetime(self):
# 2579 - checking this does not raise
values = [date(1677, 1, 1), date(1677, 1, 2)]
_, ax = self.plt.subplots()
ax.plot(values)
values = [datetime(1677, 1, 1, 12), datetime(1677, 1, 2, 12)]
ax.plot(values)
def test_format_timedelta_ticks_narrow(self):
expected_labels = [f"00:00:00.0000000{i:0>2d}" for i in np.arange(10)]
rng = timedelta_range("0", periods=10, freq="ns")
df = DataFrame(np.random.randn(len(rng), 3), rng)
fig, ax = self.plt.subplots()
df.plot(fontsize=2, ax=ax)
self.plt.draw()
labels = ax.get_xticklabels()
result_labels = [x.get_text() for x in labels]
assert len(result_labels) == len(expected_labels)
assert result_labels == expected_labels
def test_format_timedelta_ticks_wide(self):
expected_labels = [
"00:00:00",
"1 days 03:46:40",
"2 days 07:33:20",
"3 days 11:20:00",
"4 days 15:06:40",
"5 days 18:53:20",
"6 days 22:40:00",
"8 days 02:26:40",
"9 days 06:13:20",
]
rng = timedelta_range("0", periods=10, freq="1 d")
df = DataFrame(np.random.randn(len(rng), 3), rng)
fig, ax = self.plt.subplots()
ax = df.plot(fontsize=2, ax=ax)
self.plt.draw()
labels = ax.get_xticklabels()
result_labels = [x.get_text() for x in labels]
assert len(result_labels) == len(expected_labels)
assert result_labels == expected_labels
def test_timedelta_plot(self):
# test issue #8711
s = Series(range(5), timedelta_range("1day", periods=5))
_, ax = self.plt.subplots()
_check_plot_works(s.plot, ax=ax)
# test long period
index = timedelta_range("1 day 2 hr 30 min 10 s", periods=10, freq="1 d")
s = Series(np.random.randn(len(index)), index)
_, ax = self.plt.subplots()
_check_plot_works(s.plot, ax=ax)
# test short period
index = timedelta_range("1 day 2 hr 30 min 10 s", periods=10, freq="1 ns")
s = Series(np.random.randn(len(index)), index)
_, ax = self.plt.subplots()
_check_plot_works(s.plot, ax=ax)
def test_hist(self):
# https://github.com/matplotlib/matplotlib/issues/8459
rng = date_range("1/1/2011", periods=10, freq="H")
x = rng
w1 = np.arange(0, 1, 0.1)
w2 = np.arange(0, 1, 0.1)[::-1]
_, ax = self.plt.subplots()
ax.hist([x, x], weights=[w1, w2])
def test_overlapping_datetime(self):
# GB 6608
s1 = Series(
[1, 2, 3],
index=[
datetime(1995, 12, 31),
datetime(2000, 12, 31),
datetime(2005, 12, 31),
],
)
s2 = Series(
[1, 2, 3],
index=[
datetime(1997, 12, 31),
datetime(2003, 12, 31),
datetime(2008, 12, 31),
],
)
# plot first series, then add the second series to those axes,
# then try adding the first series again
_, ax = self.plt.subplots()
s1.plot(ax=ax)
s2.plot(ax=ax)
s1.plot(ax=ax)
@pytest.mark.xfail(reason="GH9053 matplotlib does not use ax.xaxis.converter")
def test_add_matplotlib_datetime64(self):
# GH9053 - ensure that a plot with PeriodConverter still understands
# datetime64 data. This still fails because matplotlib overrides the
# ax.xaxis.converter with a DatetimeConverter
s = Series(np.random.randn(10), index=date_range("1970-01-02", periods=10))
ax = s.plot()
with tm.assert_produces_warning(DeprecationWarning):
# multi-dimensional indexing
ax.plot(s.index, s.values, color="g")
l1, l2 = ax.lines
tm.assert_numpy_array_equal(l1.get_xydata(), l2.get_xydata())
def test_matplotlib_scatter_datetime64(self):
# https://github.com/matplotlib/matplotlib/issues/11391
df = DataFrame(np.random.RandomState(0).rand(10, 2), columns=["x", "y"])
df["time"] = date_range("2018-01-01", periods=10, freq="D")
fig, ax = self.plt.subplots()
ax.scatter(x="time", y="y", data=df)
self.plt.draw()
label = ax.get_xticklabels()[0]
if self.mpl_ge_3_2_0:
expected = "2018-01-01"
elif self.mpl_ge_3_0_0:
expected = "2017-12-08"
else:
expected = "2017-12-12"
assert label.get_text() == expected
def test_check_xticks_rot(self):
# https://github.com/pandas-dev/pandas/issues/29460
# regular time series
x = to_datetime(["2020-05-01", "2020-05-02", "2020-05-03"])
df = DataFrame({"x": x, "y": [1, 2, 3]})
axes = df.plot(x="x", y="y")
self._check_ticks_props(axes, xrot=0)
# irregular time series
x = to_datetime(["2020-05-01", "2020-05-02", "2020-05-04"])
df = DataFrame({"x": x, "y": [1, 2, 3]})
axes = df.plot(x="x", y="y")
self._check_ticks_props(axes, xrot=30)
# use timeseries index or not
axes = df.set_index("x").plot(y="y", use_index=True)
self._check_ticks_props(axes, xrot=30)
axes = df.set_index("x").plot(y="y", use_index=False)
self._check_ticks_props(axes, xrot=0)
# separate subplots
axes = df.plot(x="x", y="y", subplots=True, sharex=True)
self._check_ticks_props(axes, xrot=30)
axes = df.plot(x="x", y="y", subplots=True, sharex=False)
self._check_ticks_props(axes, xrot=0)
def _check_plot_works(f, freq=None, series=None, *args, **kwargs):
import matplotlib.pyplot as plt
fig = plt.gcf()
try:
plt.clf()
ax = fig.add_subplot(211)
orig_ax = kwargs.pop("ax", plt.gca())
orig_axfreq = getattr(orig_ax, "freq", None)
ret = f(*args, **kwargs)
assert ret is not None # do something more intelligent
ax = kwargs.pop("ax", plt.gca())
if series is not None:
dfreq = series.index.freq
if isinstance(dfreq, BaseOffset):
dfreq = dfreq.rule_code
if orig_axfreq is None:
assert ax.freq == dfreq
if freq is not None and orig_axfreq is None:
assert ax.freq == freq
ax = fig.add_subplot(212)
kwargs["ax"] = ax
ret = f(*args, **kwargs)
assert ret is not None # TODO: do something more intelligent
with tm.ensure_clean(return_filelike=True) as path:
plt.savefig(path)
# GH18439
# this is supported only in Python 3 pickle since
# pickle in Python2 doesn't support instancemethod pickling
# TODO(statsmodels 0.10.0): Remove the statsmodels check
# https://github.com/pandas-dev/pandas/issues/24088
# https://github.com/statsmodels/statsmodels/issues/4772
if "statsmodels" not in sys.modules:
with tm.ensure_clean(return_filelike=True) as path:
pickle.dump(fig, path)
finally:
plt.close(fig)