212 lines
8.2 KiB
Python
212 lines
8.2 KiB
Python
""" Test the graphical_lasso module.
|
|
"""
|
|
import sys
|
|
import pytest
|
|
|
|
import numpy as np
|
|
from scipy import linalg
|
|
|
|
from numpy.testing import assert_allclose
|
|
from sklearn.utils._testing import assert_array_almost_equal
|
|
from sklearn.utils._testing import assert_array_less
|
|
|
|
from sklearn.covariance import (graphical_lasso, GraphicalLasso,
|
|
GraphicalLassoCV, empirical_covariance)
|
|
from sklearn.datasets import make_sparse_spd_matrix
|
|
from io import StringIO
|
|
from sklearn.utils import check_random_state
|
|
from sklearn import datasets
|
|
|
|
|
|
def test_graphical_lasso(random_state=0):
|
|
# Sample data from a sparse multivariate normal
|
|
dim = 20
|
|
n_samples = 100
|
|
random_state = check_random_state(random_state)
|
|
prec = make_sparse_spd_matrix(dim, alpha=.95,
|
|
random_state=random_state)
|
|
cov = linalg.inv(prec)
|
|
X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples)
|
|
emp_cov = empirical_covariance(X)
|
|
|
|
for alpha in (0., .1, .25):
|
|
covs = dict()
|
|
icovs = dict()
|
|
for method in ('cd', 'lars'):
|
|
cov_, icov_, costs = graphical_lasso(emp_cov, return_costs=True,
|
|
alpha=alpha, mode=method)
|
|
covs[method] = cov_
|
|
icovs[method] = icov_
|
|
costs, dual_gap = np.array(costs).T
|
|
# Check that the costs always decrease (doesn't hold if alpha == 0)
|
|
if not alpha == 0:
|
|
assert_array_less(np.diff(costs), 0)
|
|
# Check that the 2 approaches give similar results
|
|
assert_array_almost_equal(covs['cd'], covs['lars'], decimal=4)
|
|
assert_array_almost_equal(icovs['cd'], icovs['lars'], decimal=4)
|
|
|
|
# Smoke test the estimator
|
|
model = GraphicalLasso(alpha=.25).fit(X)
|
|
model.score(X)
|
|
assert_array_almost_equal(model.covariance_, covs['cd'], decimal=4)
|
|
assert_array_almost_equal(model.covariance_, covs['lars'], decimal=4)
|
|
|
|
# For a centered matrix, assume_centered could be chosen True or False
|
|
# Check that this returns indeed the same result for centered data
|
|
Z = X - X.mean(0)
|
|
precs = list()
|
|
for assume_centered in (False, True):
|
|
prec_ = GraphicalLasso(
|
|
assume_centered=assume_centered).fit(Z).precision_
|
|
precs.append(prec_)
|
|
assert_array_almost_equal(precs[0], precs[1])
|
|
|
|
|
|
def test_graphical_lasso_iris():
|
|
# Hard-coded solution from R glasso package for alpha=1.0
|
|
# (need to set penalize.diagonal to FALSE)
|
|
cov_R = np.array([
|
|
[0.68112222, 0.0000000, 0.265820, 0.02464314],
|
|
[0.00000000, 0.1887129, 0.000000, 0.00000000],
|
|
[0.26582000, 0.0000000, 3.095503, 0.28697200],
|
|
[0.02464314, 0.0000000, 0.286972, 0.57713289]
|
|
])
|
|
icov_R = np.array([
|
|
[1.5190747, 0.000000, -0.1304475, 0.0000000],
|
|
[0.0000000, 5.299055, 0.0000000, 0.0000000],
|
|
[-0.1304475, 0.000000, 0.3498624, -0.1683946],
|
|
[0.0000000, 0.000000, -0.1683946, 1.8164353]
|
|
])
|
|
X = datasets.load_iris().data
|
|
emp_cov = empirical_covariance(X)
|
|
for method in ('cd', 'lars'):
|
|
cov, icov = graphical_lasso(emp_cov, alpha=1.0, return_costs=False,
|
|
mode=method)
|
|
assert_array_almost_equal(cov, cov_R)
|
|
assert_array_almost_equal(icov, icov_R)
|
|
|
|
|
|
def test_graph_lasso_2D():
|
|
# Hard-coded solution from Python skggm package
|
|
# obtained by calling `quic(emp_cov, lam=.1, tol=1e-8)`
|
|
cov_skggm = np.array([[3.09550269, 1.186972],
|
|
[1.186972, 0.57713289]])
|
|
|
|
icov_skggm = np.array([[1.52836773, -3.14334831],
|
|
[-3.14334831, 8.19753385]])
|
|
X = datasets.load_iris().data[:, 2:]
|
|
emp_cov = empirical_covariance(X)
|
|
for method in ('cd', 'lars'):
|
|
cov, icov = graphical_lasso(emp_cov, alpha=.1, return_costs=False,
|
|
mode=method)
|
|
assert_array_almost_equal(cov, cov_skggm)
|
|
assert_array_almost_equal(icov, icov_skggm)
|
|
|
|
|
|
def test_graphical_lasso_iris_singular():
|
|
# Small subset of rows to test the rank-deficient case
|
|
# Need to choose samples such that none of the variances are zero
|
|
indices = np.arange(10, 13)
|
|
|
|
# Hard-coded solution from R glasso package for alpha=0.01
|
|
cov_R = np.array([
|
|
[0.08, 0.056666662595, 0.00229729713223, 0.00153153142149],
|
|
[0.056666662595, 0.082222222222, 0.00333333333333, 0.00222222222222],
|
|
[0.002297297132, 0.003333333333, 0.00666666666667, 0.00009009009009],
|
|
[0.001531531421, 0.002222222222, 0.00009009009009, 0.00222222222222]
|
|
])
|
|
icov_R = np.array([
|
|
[24.42244057, -16.831679593, 0.0, 0.0],
|
|
[-16.83168201, 24.351841681, -6.206896552, -12.5],
|
|
[0.0, -6.206896171, 153.103448276, 0.0],
|
|
[0.0, -12.499999143, 0.0, 462.5]
|
|
])
|
|
X = datasets.load_iris().data[indices, :]
|
|
emp_cov = empirical_covariance(X)
|
|
for method in ('cd', 'lars'):
|
|
cov, icov = graphical_lasso(emp_cov, alpha=0.01, return_costs=False,
|
|
mode=method)
|
|
assert_array_almost_equal(cov, cov_R, decimal=5)
|
|
assert_array_almost_equal(icov, icov_R, decimal=5)
|
|
|
|
|
|
def test_graphical_lasso_cv(random_state=1):
|
|
# Sample data from a sparse multivariate normal
|
|
dim = 5
|
|
n_samples = 6
|
|
random_state = check_random_state(random_state)
|
|
prec = make_sparse_spd_matrix(dim, alpha=.96,
|
|
random_state=random_state)
|
|
cov = linalg.inv(prec)
|
|
X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples)
|
|
# Capture stdout, to smoke test the verbose mode
|
|
orig_stdout = sys.stdout
|
|
try:
|
|
sys.stdout = StringIO()
|
|
# We need verbose very high so that Parallel prints on stdout
|
|
GraphicalLassoCV(verbose=100, alphas=5, tol=1e-1).fit(X)
|
|
finally:
|
|
sys.stdout = orig_stdout
|
|
|
|
# Smoke test with specified alphas
|
|
GraphicalLassoCV(alphas=[0.8, 0.5], tol=1e-1, n_jobs=1).fit(X)
|
|
|
|
|
|
# TODO: Remove in 1.1 when grid_scores_ is deprecated
|
|
def test_graphical_lasso_cv_grid_scores_and_cv_alphas_deprecated():
|
|
splits = 4
|
|
n_alphas = 5
|
|
n_refinements = 3
|
|
true_cov = np.array([[0.8, 0.0, 0.2, 0.0],
|
|
[0.0, 0.4, 0.0, 0.0],
|
|
[0.2, 0.0, 0.3, 0.1],
|
|
[0.0, 0.0, 0.1, 0.7]])
|
|
rng = np.random.RandomState(0)
|
|
X = rng.multivariate_normal(mean=[0, 0, 0, 0], cov=true_cov, size=200)
|
|
cov = GraphicalLassoCV(cv=splits, alphas=n_alphas,
|
|
n_refinements=n_refinements).fit(X)
|
|
|
|
total_alphas = n_refinements * n_alphas + 1
|
|
msg = (r"The grid_scores_ attribute is deprecated in version 0\.24 in "
|
|
r"favor of cv_results_ and will be removed in version 1\.1 "
|
|
r"\(renaming of 0\.26\).")
|
|
with pytest.warns(FutureWarning, match=msg):
|
|
assert cov.grid_scores_.shape == (total_alphas, splits)
|
|
|
|
msg = (r"The cv_alphas_ attribute is deprecated in version 0\.24 in "
|
|
r"favor of cv_results_\['alpha'\] and will be removed in version "
|
|
r"1\.1 \(renaming of 0\.26\)")
|
|
with pytest.warns(FutureWarning, match=msg):
|
|
assert len(cov.cv_alphas_) == total_alphas
|
|
|
|
|
|
def test_graphical_lasso_cv_scores():
|
|
splits = 4
|
|
n_alphas = 5
|
|
n_refinements = 3
|
|
true_cov = np.array([[0.8, 0.0, 0.2, 0.0],
|
|
[0.0, 0.4, 0.0, 0.0],
|
|
[0.2, 0.0, 0.3, 0.1],
|
|
[0.0, 0.0, 0.1, 0.7]])
|
|
rng = np.random.RandomState(0)
|
|
X = rng.multivariate_normal(mean=[0, 0, 0, 0], cov=true_cov, size=200)
|
|
cov = GraphicalLassoCV(cv=splits, alphas=n_alphas,
|
|
n_refinements=n_refinements).fit(X)
|
|
|
|
cv_results = cov.cv_results_
|
|
# alpha and one for each split
|
|
|
|
total_alphas = n_refinements * n_alphas + 1
|
|
keys = ['alphas']
|
|
split_keys = ['split{}_score'.format(i) for i in range(splits)]
|
|
for key in keys + split_keys:
|
|
assert key in cv_results
|
|
assert len(cv_results[key]) == total_alphas
|
|
|
|
cv_scores = np.asarray([cov.cv_results_[key] for key in split_keys])
|
|
expected_mean = cv_scores.mean(axis=0)
|
|
expected_std = cv_scores.std(axis=0)
|
|
|
|
assert_allclose(cov.cv_results_["mean_score"], expected_mean)
|
|
assert_allclose(cov.cv_results_["std_score"], expected_std)
|