projektAI/venv/Lib/site-packages/mlxtend/classifier/ensemble_vote.py
2021-06-06 22:13:05 +02:00

307 lines
12 KiB
Python

# Soft Voting/Majority Rule classifier
# Sebastian Raschka 2014-2020
# mlxtend Machine Learning Library Extensions
#
# Implementation of an meta-classification algorithm for majority voting.
# Author: Sebastian Raschka <sebastianraschka.com>
#
# License: BSD 3 clause
import numpy as np
import warnings
from sklearn.base import (BaseEstimator, ClassifierMixin, TransformerMixin,
clone)
from sklearn.exceptions import NotFittedError
from sklearn.preprocessing import LabelEncoder
from ..externals import six
from ..externals.name_estimators import _name_estimators
class EnsembleVoteClassifier(BaseEstimator, ClassifierMixin, TransformerMixin):
"""Soft Voting/Majority Rule classifier for scikit-learn estimators.
Parameters
----------
clfs : array-like, shape = [n_classifiers]
A list of classifiers.
Invoking the `fit` method on the `VotingClassifier` will fit clones
of those original classifiers
be stored in the class attribute
if `use_clones=True` (default) and
`fit_base_estimators=True` (default).
voting : str, {'hard', 'soft'} (default='hard')
If 'hard', uses predicted class labels for majority rule voting.
Else if 'soft', predicts the class label based on the argmax of
the sums of the predicted probalities, which is recommended for
an ensemble of well-calibrated classifiers.
weights : array-like, shape = [n_classifiers], optional (default=`None`)
Sequence of weights (`float` or `int`) to weight the occurances of
predicted class labels (`hard` voting) or class probabilities
before averaging (`soft` voting). Uses uniform weights if `None`.
verbose : int, optional (default=0)
Controls the verbosity of the building process.
- `verbose=0` (default): Prints nothing
- `verbose=1`: Prints the number & name of the clf being fitted
- `verbose=2`: Prints info about the parameters of the clf being fitted
- `verbose>2`: Changes `verbose` param of the underlying clf to
self.verbose - 2
use_clones : bool (default: True)
Clones the classifiers for stacking classification if True (default)
or else uses the original ones, which will be refitted on the dataset
upon calling the `fit` method. Hence, if use_clones=True, the original
input classifiers will remain unmodified upon using the
StackingClassifier's `fit` method.
Setting `use_clones=False` is
recommended if you are working with estimators that are supporting
the scikit-learn fit/predict API interface but are not compatible
to scikit-learn's `clone` function.
fit_base_estimators : bool (default: True)
Refits classifiers in `clfs` if True; uses references to the `clfs`,
otherwise (assumes that the classifiers were already fit).
Note: fit_base_estimators=False will enforce use_clones to be False,
and is incompatible to most scikit-learn wrappers!
For instance, if any form of cross-validation is performed
this would require the re-fitting classifiers to training folds, which
would raise a NotFitterError if fit_base_estimators=False.
(New in mlxtend v0.6.)
Attributes
----------
classes_ : array-like, shape = [n_predictions]
clf : array-like, shape = [n_predictions]
The input classifiers; may be overwritten if `use_clones=False`
clf_ : array-like, shape = [n_predictions]
Fitted input classifiers; clones if `use_clones=True`
Examples
--------
>>> import numpy as np
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.ensemble import RandomForestClassifier
>>> from mlxtend.sklearn import EnsembleVoteClassifier
>>> clf1 = LogisticRegression(random_seed=1)
>>> clf2 = RandomForestClassifier(random_seed=1)
>>> clf3 = GaussianNB()
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> eclf1 = EnsembleVoteClassifier(clfs=[clf1, clf2, clf3],
... voting='hard', verbose=1)
>>> eclf1 = eclf1.fit(X, y)
>>> print(eclf1.predict(X))
[1 1 1 2 2 2]
>>> eclf2 = EnsembleVoteClassifier(clfs=[clf1, clf2, clf3], voting='soft')
>>> eclf2 = eclf2.fit(X, y)
>>> print(eclf2.predict(X))
[1 1 1 2 2 2]
>>> eclf3 = EnsembleVoteClassifier(clfs=[clf1, clf2, clf3],
... voting='soft', weights=[2,1,1])
>>> eclf3 = eclf3.fit(X, y)
>>> print(eclf3.predict(X))
[1 1 1 2 2 2]
>>>
For more usage examples, please see
http://rasbt.github.io/mlxtend/user_guide/classifier/EnsembleVoteClassifier/
"""
def __init__(self, clfs, voting='hard',
weights=None, verbose=0,
use_clones=True,
fit_base_estimators=True):
self.clfs = clfs
self.named_clfs = {key: value for key, value in _name_estimators(clfs)}
self.voting = voting
self.weights = weights
self.verbose = verbose
self.use_clones = use_clones
self.fit_base_estimators = fit_base_estimators
def fit(self, X, y, sample_weight=None):
"""Learn weight coefficients from training data for each classifier.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape = [n_samples]
Target values.
sample_weight : array-like, shape = [n_samples], optional
Sample weights passed as sample_weights to each regressor
in the regressors list as well as the meta_regressor.
Raises error if some regressor does not support
sample_weight in the fit() method.
Returns
-------
self : object
"""
if isinstance(y, np.ndarray) and len(y.shape) > 1 and y.shape[1] > 1:
raise NotImplementedError('Multilabel and multi-output'
' classification is not supported.')
if self.voting not in ('soft', 'hard'):
raise ValueError("Voting must be 'soft' or 'hard'; got (voting=%r)"
% self.voting)
if self.weights and len(self.weights) != len(self.clfs):
raise ValueError('Number of classifiers and weights must be equal'
'; got %d weights, %d clfs'
% (len(self.weights), len(self.clfs)))
self.le_ = LabelEncoder()
self.le_.fit(y)
self.classes_ = self.le_.classes_
if not self.fit_base_estimators:
warnings.warn("fit_base_estimators=False "
"enforces use_clones to be `False`")
self.use_clones = False
if self.use_clones:
self.clfs_ = clone(self.clfs)
else:
self.clfs_ = self.clfs
if self.fit_base_estimators:
if self.verbose > 0:
print("Fitting %d classifiers..." % (len(self.clfs)))
for clf in self.clfs_:
if self.verbose > 0:
i = self.clfs_.index(clf) + 1
print("Fitting clf%d: %s (%d/%d)" %
(i, _name_estimators((clf,))[0][0], i,
len(self.clfs_)))
if self.verbose > 2:
if hasattr(clf, 'verbose'):
clf.set_params(verbose=self.verbose - 2)
if self.verbose > 1:
print(_name_estimators((clf,))[0][1])
if sample_weight is None:
clf.fit(X, self.le_.transform(y))
else:
clf.fit(X, self.le_.transform(y),
sample_weight=sample_weight)
return self
def predict(self, X):
""" Predict class labels for X.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and
n_features is the number of features.
Returns
----------
maj : array-like, shape = [n_samples]
Predicted class labels.
"""
if not hasattr(self, 'clfs_'):
raise NotFittedError("Estimator not fitted, "
"call `fit` before exploiting the model.")
if self.voting == 'soft':
maj = np.argmax(self.predict_proba(X), axis=1)
else: # 'hard' voting
predictions = self._predict(X)
maj = np.apply_along_axis(lambda x:
np.argmax(np.bincount(
x, weights=self.weights)),
axis=1,
arr=predictions)
maj = self.le_.inverse_transform(maj)
return maj
def predict_proba(self, X):
""" Predict class probabilities for X.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and
n_features is the number of features.
Returns
----------
avg : array-like, shape = [n_samples, n_classes]
Weighted average probability for each class per sample.
"""
if not hasattr(self, 'clfs_'):
raise NotFittedError("Estimator not fitted, "
"call `fit` before exploiting the model.")
avg = np.average(self._predict_probas(X), axis=0, weights=self.weights)
return avg
def transform(self, X):
""" Return class labels or probabilities for X for each estimator.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and
n_features is the number of features.
Returns
-------
If `voting='soft'` : array-like = [n_classifiers, n_samples, n_classes]
Class probabilties calculated by each classifier.
If `voting='hard'` : array-like = [n_classifiers, n_samples]
Class labels predicted by each classifier.
"""
if self.voting == 'soft':
return self._predict_probas(X)
else:
return self._predict(X)
def get_params(self, deep=True):
"""Return estimator parameter names for GridSearch support."""
if not deep:
return super(EnsembleVoteClassifier, self).get_params(deep=False)
else:
out = self.named_clfs.copy()
for name, step in six.iteritems(self.named_clfs):
for key, value in six.iteritems(step.get_params(deep=True)):
out['%s__%s' % (name, key)] = value
for key, value in six.iteritems(
super(EnsembleVoteClassifier, self).get_params(deep=False)):
out['%s' % key] = value
return out
def _predict(self, X):
"""Collect results from clf.predict calls."""
if self.fit_base_estimators:
return np.asarray([clf.predict(X) for clf in self.clfs_]).T
else:
return np.asarray([self.le_.transform(clf.predict(X))
for clf in self.clfs_]).T
def _predict_probas(self, X):
"""Collect results from clf.predict_proba calls."""
return np.asarray([clf.predict_proba(X) for clf in self.clfs_])