projektAI/venv/Lib/site-packages/mlxtend/regressor/linear_regression.py
2021-06-06 22:13:05 +02:00

165 lines
6.1 KiB
Python

# Sebastian Raschka 2014-2020
# mlxtend Machine Learning Library Extensions
#
# Base Regressor (Regressor Parent Class)
# Author: Sebastian Raschka <sebastianraschka.com>
#
# License: BSD 3 clause
import numpy as np
from time import time
from .._base import _BaseModel
from .._base import _IterativeModel
from .._base import _Regressor
class LinearRegression(_BaseModel, _IterativeModel, _Regressor):
""" Ordinary least squares linear regression.
Parameters
------------
method : string (default: 'direct')
For gradient descent-based optimization, use `sgd` (see `minibatch`
parameter for further options). Otherwise, if `direct` (default),
the analytical method is used. For alternative, numerically more
stable solutions, use either `qr` (QR decomopisition) or `svd`
(Singular Value Decomposition).
eta : float (default: 0.01)
solver learning rate (between 0.0 and 1.0). Used with `method =`
`'sgd'`. (See `methods` parameter for details)
epochs : int (default: 50)
Passes over the training dataset.
Prior to each epoch, the dataset is shuffled
if `minibatches > 1` to prevent cycles in stochastic gradient descent.
Used with `method = 'sgd'`. (See `methods` parameter for details)
minibatches : int (default: None)
The number of minibatches for gradient-based optimization.
If None: Direct method, QR, or SVD method (see `method` parameter
for details)
If 1: Gradient Descent learning
If len(y): Stochastic Gradient Descent learning
If 1 < minibatches < len(y): Minibatch learning
random_seed : int (default: None)
Set random state for shuffling and initializing the weights. Used in
`method = 'sgd'`. (See `methods` parameter for details)
print_progress : int (default: 0)
Prints progress in fitting to stderr if `method = 'sgd'`.
0: No output
1: Epochs elapsed and cost
2: 1 plus time elapsed
3: 2 plus estimated time until completion
Attributes
-----------
w_ : 2d-array, shape={n_features, 1}
Model weights after fitting.
b_ : 1d-array, shape={1,}
Bias unit after fitting.
cost_ : list
Sum of squared errors after each epoch;
ignored if solver='normal equation'
Examples
-----------
For usage examples, please see
http://rasbt.github.io/mlxtend/user_guide/regressor/LinearRegression/
"""
def __init__(self, method='direct', eta=0.01, epochs=50,
minibatches=None, random_seed=None,
print_progress=0):
_BaseModel.__init__(self)
_IterativeModel.__init__(self)
_Regressor.__init__(self)
self.eta = eta
self.epochs = epochs
self.minibatches = minibatches
self.random_seed = random_seed
self.print_progress = print_progress
self._is_fitted = False
self.method = method
if method != 'sgd' and minibatches is not None:
raise ValueError(('Minibatches should be set to `None` '
'if `method` != `sgd`. Got method=`%s`.')
% (method))
supported_methods = ('sgd', 'direct', 'svd', 'qr')
if method not in supported_methods:
raise ValueError('`method` must be in %s. Got %s.' % (
supported_methods, method))
def _fit(self, X, y, init_params=True):
if init_params:
self.b_, self.w_ = self._init_params(
weights_shape=(X.shape[1], 1),
bias_shape=(1,),
random_seed=self.random_seed)
self.cost_ = []
# Direct analytical method
if self.method == 'direct':
self.b_, self.w_ = self._normal_equation(X, y)
# Gradient descent or stochastic gradient descent learning
elif self.method == 'sgd':
self.init_time_ = time()
rgen = np.random.RandomState(self.random_seed)
for i in range(self.epochs):
for idx in self._yield_minibatches_idx(
rgen=rgen,
n_batches=self.minibatches,
data_ary=y,
shuffle=True):
y_val = self._net_input(X[idx])
errors = (y[idx] - y_val)
self.w_ += (self.eta *
X[idx].T.dot(errors).reshape(self.w_.shape))
self.b_ += self.eta * errors.sum()
cost = self._sum_squared_error_cost(y, self._net_input(X))
self.cost_.append(cost)
if self.print_progress:
self._print_progress(iteration=(i + 1),
n_iter=self.epochs,
cost=cost)
# Solve using QR decomposition
elif self.method == 'qr':
Xb = np.hstack((np.ones((X.shape[0], 1)), X))
Q, R = np.linalg.qr(Xb)
beta = np.dot(np.linalg.inv(R), np.dot(Q.T, y))
self.b_ = np.array([beta[0]])
self.w_ = beta[1:].reshape(X.shape[1], 1)
# Solve using SVD
elif self.method == 'svd':
Xb = np.hstack((np.ones((X.shape[0], 1)), X))
beta = np.dot(np.linalg.pinv(Xb), y)
self.b_ = np.array([beta[0]])
self.w_ = beta[1:].reshape(X.shape[1], 1)
return self
def _normal_equation(self, X, y):
"""Solve linear regression analytically."""
Xb = np.hstack((np.ones((X.shape[0], 1)), X))
w = np.zeros(X.shape[1])
z = np.linalg.inv(np.dot(Xb.T, Xb))
params = np.dot(z, np.dot(Xb.T, y))
b, w = np.array([params[0]]), params[1:].reshape(X.shape[1], 1)
return b, w
def _net_input(self, X):
"""Compute the linear net input."""
return (np.dot(X, self.w_) + self.b_).flatten()
def _predict(self, X):
return self._net_input(X)
def _sum_squared_error_cost(self, y, y_val):
errors = (y - y_val)
return (errors**2).sum() / 2.0