projektAI/venv/Lib/site-packages/pandas/tests/window/test_rolling.py
2021-06-06 22:13:05 +02:00

1128 lines
34 KiB
Python

from datetime import datetime, timedelta
import numpy as np
import pytest
from pandas.errors import UnsupportedFunctionCall
from pandas import (
DataFrame,
DatetimeIndex,
MultiIndex,
Series,
Timedelta,
Timestamp,
date_range,
period_range,
to_datetime,
to_timedelta,
)
import pandas._testing as tm
from pandas.api.indexers import BaseIndexer
from pandas.core.window import Rolling
def test_doc_string():
df = DataFrame({"B": [0, 1, 2, np.nan, 4]})
df
df.rolling(2).sum()
df.rolling(2, min_periods=1).sum()
def test_constructor(frame_or_series):
# GH 12669
c = frame_or_series(range(5)).rolling
# valid
c(0)
c(window=2)
c(window=2, min_periods=1)
c(window=2, min_periods=1, center=True)
c(window=2, min_periods=1, center=False)
# GH 13383
msg = "window must be non-negative"
with pytest.raises(ValueError, match=msg):
c(-1)
@pytest.mark.parametrize("w", [2.0, "foo", np.array([2])])
def test_invalid_constructor(frame_or_series, w):
# not valid
c = frame_or_series(range(5)).rolling
msg = (
"window must be an integer|"
"passed window foo is not compatible with a datetimelike index"
)
with pytest.raises(ValueError, match=msg):
c(window=w)
msg = "min_periods must be an integer"
with pytest.raises(ValueError, match=msg):
c(window=2, min_periods=w)
msg = "center must be a boolean"
with pytest.raises(ValueError, match=msg):
c(window=2, min_periods=1, center=w)
@pytest.mark.parametrize("window", [timedelta(days=3), Timedelta(days=3)])
def test_constructor_with_timedelta_window(window):
# GH 15440
n = 10
df = DataFrame(
{"value": np.arange(n)}, index=date_range("2015-12-24", periods=n, freq="D")
)
expected_data = np.append([0.0, 1.0], np.arange(3.0, 27.0, 3))
result = df.rolling(window=window).sum()
expected = DataFrame(
{"value": expected_data},
index=date_range("2015-12-24", periods=n, freq="D"),
)
tm.assert_frame_equal(result, expected)
expected = df.rolling("3D").sum()
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("window", [timedelta(days=3), Timedelta(days=3), "3D"])
def test_constructor_timedelta_window_and_minperiods(window, raw):
# GH 15305
n = 10
df = DataFrame(
{"value": np.arange(n)}, index=date_range("2017-08-08", periods=n, freq="D")
)
expected = DataFrame(
{"value": np.append([np.NaN, 1.0], np.arange(3.0, 27.0, 3))},
index=date_range("2017-08-08", periods=n, freq="D"),
)
result_roll_sum = df.rolling(window=window, min_periods=2).sum()
result_roll_generic = df.rolling(window=window, min_periods=2).apply(sum, raw=raw)
tm.assert_frame_equal(result_roll_sum, expected)
tm.assert_frame_equal(result_roll_generic, expected)
@pytest.mark.parametrize("method", ["std", "mean", "sum", "max", "min", "var"])
def test_numpy_compat(method):
# see gh-12811
r = Rolling(Series([2, 4, 6]), window=2)
msg = "numpy operations are not valid with window objects"
with pytest.raises(UnsupportedFunctionCall, match=msg):
getattr(r, method)(1, 2, 3)
with pytest.raises(UnsupportedFunctionCall, match=msg):
getattr(r, method)(dtype=np.float64)
def test_closed_fixed(closed, arithmetic_win_operators):
# GH 34315
func_name = arithmetic_win_operators
df_fixed = DataFrame({"A": [0, 1, 2, 3, 4]})
df_time = DataFrame({"A": [0, 1, 2, 3, 4]}, index=date_range("2020", periods=5))
result = getattr(df_fixed.rolling(2, closed=closed, min_periods=1), func_name)()
expected = getattr(df_time.rolling("2D", closed=closed), func_name)().reset_index(
drop=True
)
tm.assert_frame_equal(result, expected)
def test_closed_fixed_binary_col():
# GH 34315
data = [0, 1, 1, 0, 0, 1, 0, 1]
df = DataFrame(
{"binary_col": data},
index=date_range(start="2020-01-01", freq="min", periods=len(data)),
)
rolling = df.rolling(window=len(df), closed="left", min_periods=1)
result = rolling.mean()
expected = DataFrame(
[np.nan, 0, 0.5, 2 / 3, 0.5, 0.4, 0.5, 0.428571],
columns=["binary_col"],
index=date_range(start="2020-01-01", freq="min", periods=len(data)),
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("closed", ["neither", "left"])
def test_closed_empty(closed, arithmetic_win_operators):
# GH 26005
func_name = arithmetic_win_operators
ser = Series(data=np.arange(5), index=date_range("2000", periods=5, freq="2D"))
roll = ser.rolling("1D", closed=closed)
result = getattr(roll, func_name)()
expected = Series([np.nan] * 5, index=ser.index)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("func", ["min", "max"])
def test_closed_one_entry(func):
# GH24718
ser = Series(data=[2], index=date_range("2000", periods=1))
result = getattr(ser.rolling("10D", closed="left"), func)()
tm.assert_series_equal(result, Series([np.nan], index=ser.index))
@pytest.mark.parametrize("func", ["min", "max"])
def test_closed_one_entry_groupby(func):
# GH24718
ser = DataFrame(
data={"A": [1, 1, 2], "B": [3, 2, 1]}, index=date_range("2000", periods=3)
)
result = getattr(
ser.groupby("A", sort=False)["B"].rolling("10D", closed="left"), func
)()
exp_idx = MultiIndex.from_arrays(arrays=[[1, 1, 2], ser.index], names=("A", None))
expected = Series(data=[np.nan, 3, np.nan], index=exp_idx, name="B")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("input_dtype", ["int", "float"])
@pytest.mark.parametrize(
"func,closed,expected",
[
("min", "right", [0.0, 0, 0, 1, 2, 3, 4, 5, 6, 7]),
("min", "both", [0.0, 0, 0, 0, 1, 2, 3, 4, 5, 6]),
("min", "neither", [np.nan, 0, 0, 1, 2, 3, 4, 5, 6, 7]),
("min", "left", [np.nan, 0, 0, 0, 1, 2, 3, 4, 5, 6]),
("max", "right", [0.0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
("max", "both", [0.0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
("max", "neither", [np.nan, 0, 1, 2, 3, 4, 5, 6, 7, 8]),
("max", "left", [np.nan, 0, 1, 2, 3, 4, 5, 6, 7, 8]),
],
)
def test_closed_min_max_datetime(input_dtype, func, closed, expected):
# see gh-21704
ser = Series(
data=np.arange(10).astype(input_dtype), index=date_range("2000", periods=10)
)
result = getattr(ser.rolling("3D", closed=closed), func)()
expected = Series(expected, index=ser.index)
tm.assert_series_equal(result, expected)
def test_closed_uneven():
# see gh-21704
ser = Series(data=np.arange(10), index=date_range("2000", periods=10))
# uneven
ser = ser.drop(index=ser.index[[1, 5]])
result = ser.rolling("3D", closed="left").min()
expected = Series([np.nan, 0, 0, 2, 3, 4, 6, 6], index=ser.index)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"func,closed,expected",
[
("min", "right", [np.nan, 0, 0, 1, 2, 3, 4, 5, np.nan, np.nan]),
("min", "both", [np.nan, 0, 0, 0, 1, 2, 3, 4, 5, np.nan]),
("min", "neither", [np.nan, np.nan, 0, 1, 2, 3, 4, 5, np.nan, np.nan]),
("min", "left", [np.nan, np.nan, 0, 0, 1, 2, 3, 4, 5, np.nan]),
("max", "right", [np.nan, 1, 2, 3, 4, 5, 6, 6, np.nan, np.nan]),
("max", "both", [np.nan, 1, 2, 3, 4, 5, 6, 6, 6, np.nan]),
("max", "neither", [np.nan, np.nan, 1, 2, 3, 4, 5, 6, np.nan, np.nan]),
("max", "left", [np.nan, np.nan, 1, 2, 3, 4, 5, 6, 6, np.nan]),
],
)
def test_closed_min_max_minp(func, closed, expected):
# see gh-21704
ser = Series(data=np.arange(10), index=date_range("2000", periods=10))
ser[ser.index[-3:]] = np.nan
result = getattr(ser.rolling("3D", min_periods=2, closed=closed), func)()
expected = Series(expected, index=ser.index)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"closed,expected",
[
("right", [0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8]),
("both", [0, 0.5, 1, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5]),
("neither", [np.nan, 0, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5]),
("left", [np.nan, 0, 0.5, 1, 2, 3, 4, 5, 6, 7]),
],
)
def test_closed_median_quantile(closed, expected):
# GH 26005
ser = Series(data=np.arange(10), index=date_range("2000", periods=10))
roll = ser.rolling("3D", closed=closed)
expected = Series(expected, index=ser.index)
result = roll.median()
tm.assert_series_equal(result, expected)
result = roll.quantile(0.5)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("roller", ["1s", 1])
def tests_empty_df_rolling(roller):
# GH 15819 Verifies that datetime and integer rolling windows can be
# applied to empty DataFrames
expected = DataFrame()
result = DataFrame().rolling(roller).sum()
tm.assert_frame_equal(result, expected)
# Verifies that datetime and integer rolling windows can be applied to
# empty DataFrames with datetime index
expected = DataFrame(index=DatetimeIndex([]))
result = DataFrame(index=DatetimeIndex([])).rolling(roller).sum()
tm.assert_frame_equal(result, expected)
def test_empty_window_median_quantile():
# GH 26005
expected = Series([np.nan, np.nan, np.nan])
roll = Series(np.arange(3)).rolling(0)
result = roll.median()
tm.assert_series_equal(result, expected)
result = roll.quantile(0.1)
tm.assert_series_equal(result, expected)
def test_missing_minp_zero():
# https://github.com/pandas-dev/pandas/pull/18921
# minp=0
x = Series([np.nan])
result = x.rolling(1, min_periods=0).sum()
expected = Series([0.0])
tm.assert_series_equal(result, expected)
# minp=1
result = x.rolling(1, min_periods=1).sum()
expected = Series([np.nan])
tm.assert_series_equal(result, expected)
def test_missing_minp_zero_variable():
# https://github.com/pandas-dev/pandas/pull/18921
x = Series(
[np.nan] * 4,
index=DatetimeIndex(["2017-01-01", "2017-01-04", "2017-01-06", "2017-01-07"]),
)
result = x.rolling(Timedelta("2d"), min_periods=0).sum()
expected = Series(0.0, index=x.index)
tm.assert_series_equal(result, expected)
def test_multi_index_names():
# GH 16789, 16825
cols = MultiIndex.from_product([["A", "B"], ["C", "D", "E"]], names=["1", "2"])
df = DataFrame(np.ones((10, 6)), columns=cols)
result = df.rolling(3).cov()
tm.assert_index_equal(result.columns, df.columns)
assert result.index.names == [None, "1", "2"]
def test_rolling_axis_sum(axis_frame):
# see gh-23372.
df = DataFrame(np.ones((10, 20)))
axis = df._get_axis_number(axis_frame)
if axis == 0:
expected = DataFrame({i: [np.nan] * 2 + [3.0] * 8 for i in range(20)})
else:
# axis == 1
expected = DataFrame([[np.nan] * 2 + [3.0] * 18] * 10)
result = df.rolling(3, axis=axis_frame).sum()
tm.assert_frame_equal(result, expected)
def test_rolling_axis_count(axis_frame):
# see gh-26055
df = DataFrame({"x": range(3), "y": range(3)})
axis = df._get_axis_number(axis_frame)
if axis in [0, "index"]:
expected = DataFrame({"x": [1.0, 2.0, 2.0], "y": [1.0, 2.0, 2.0]})
else:
expected = DataFrame({"x": [1.0, 1.0, 1.0], "y": [2.0, 2.0, 2.0]})
result = df.rolling(2, axis=axis_frame, min_periods=0).count()
tm.assert_frame_equal(result, expected)
def test_readonly_array():
# GH-27766
arr = np.array([1, 3, np.nan, 3, 5])
arr.setflags(write=False)
result = Series(arr).rolling(2).mean()
expected = Series([np.nan, 2, np.nan, np.nan, 4])
tm.assert_series_equal(result, expected)
def test_rolling_datetime(axis_frame, tz_naive_fixture):
# GH-28192
tz = tz_naive_fixture
df = DataFrame(
{i: [1] * 2 for i in date_range("2019-8-01", "2019-08-03", freq="D", tz=tz)}
)
if axis_frame in [0, "index"]:
result = df.T.rolling("2D", axis=axis_frame).sum().T
else:
result = df.rolling("2D", axis=axis_frame).sum()
expected = DataFrame(
{
**{
i: [1.0] * 2
for i in date_range("2019-8-01", periods=1, freq="D", tz=tz)
},
**{
i: [2.0] * 2
for i in date_range("2019-8-02", "2019-8-03", freq="D", tz=tz)
},
}
)
tm.assert_frame_equal(result, expected)
def test_rolling_window_as_string():
# see gh-22590
date_today = datetime.now()
days = date_range(date_today, date_today + timedelta(365), freq="D")
npr = np.random.RandomState(seed=421)
data = npr.randint(1, high=100, size=len(days))
df = DataFrame({"DateCol": days, "metric": data})
df.set_index("DateCol", inplace=True)
result = df.rolling(window="21D", min_periods=2, closed="left")["metric"].agg("max")
expData = (
[np.nan] * 2
+ [88.0] * 16
+ [97.0] * 9
+ [98.0]
+ [99.0] * 21
+ [95.0] * 16
+ [93.0] * 5
+ [89.0] * 5
+ [96.0] * 21
+ [94.0] * 14
+ [90.0] * 13
+ [88.0] * 2
+ [90.0] * 9
+ [96.0] * 21
+ [95.0] * 6
+ [91.0]
+ [87.0] * 6
+ [92.0] * 21
+ [83.0] * 2
+ [86.0] * 10
+ [87.0] * 5
+ [98.0] * 21
+ [97.0] * 14
+ [93.0] * 7
+ [87.0] * 4
+ [86.0] * 4
+ [95.0] * 21
+ [85.0] * 14
+ [83.0] * 2
+ [76.0] * 5
+ [81.0] * 2
+ [98.0] * 21
+ [95.0] * 14
+ [91.0] * 7
+ [86.0]
+ [93.0] * 3
+ [95.0] * 20
)
expected = Series(
expData, index=days.rename("DateCol")._with_freq(None), name="metric"
)
tm.assert_series_equal(result, expected)
def test_min_periods1():
# GH#6795
df = DataFrame([0, 1, 2, 1, 0], columns=["a"])
result = df["a"].rolling(3, center=True, min_periods=1).max()
expected = Series([1.0, 2.0, 2.0, 2.0, 1.0], name="a")
tm.assert_series_equal(result, expected)
def test_rolling_count_with_min_periods(frame_or_series):
# GH 26996
result = frame_or_series(range(5)).rolling(3, min_periods=3).count()
expected = frame_or_series([np.nan, np.nan, 3.0, 3.0, 3.0])
tm.assert_equal(result, expected)
def test_rolling_count_default_min_periods_with_null_values(frame_or_series):
# GH 26996
values = [1, 2, 3, np.nan, 4, 5, 6]
expected_counts = [1.0, 2.0, 3.0, 2.0, 2.0, 2.0, 3.0]
# GH 31302
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = frame_or_series(values).rolling(3).count()
expected = frame_or_series(expected_counts)
tm.assert_equal(result, expected)
@pytest.mark.parametrize(
"df,expected,window,min_periods",
[
(
DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}),
[
({"A": [1], "B": [4]}, [0]),
({"A": [1, 2], "B": [4, 5]}, [0, 1]),
({"A": [1, 2, 3], "B": [4, 5, 6]}, [0, 1, 2]),
],
3,
None,
),
(
DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}),
[
({"A": [1], "B": [4]}, [0]),
({"A": [1, 2], "B": [4, 5]}, [0, 1]),
({"A": [2, 3], "B": [5, 6]}, [1, 2]),
],
2,
1,
),
(
DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}),
[
({"A": [1], "B": [4]}, [0]),
({"A": [1, 2], "B": [4, 5]}, [0, 1]),
({"A": [2, 3], "B": [5, 6]}, [1, 2]),
],
2,
2,
),
(
DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}),
[
({"A": [1], "B": [4]}, [0]),
({"A": [2], "B": [5]}, [1]),
({"A": [3], "B": [6]}, [2]),
],
1,
1,
),
(
DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}),
[
({"A": [1], "B": [4]}, [0]),
({"A": [2], "B": [5]}, [1]),
({"A": [3], "B": [6]}, [2]),
],
1,
0,
),
(DataFrame({"A": [1], "B": [4]}), [], 2, None),
(DataFrame({"A": [1], "B": [4]}), [], 2, 1),
(DataFrame(), [({}, [])], 2, None),
(
DataFrame({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}),
[
({"A": [1.0], "B": [np.nan]}, [0]),
({"A": [1, np.nan], "B": [np.nan, 5]}, [0, 1]),
({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}, [0, 1, 2]),
],
3,
2,
),
],
)
def test_iter_rolling_dataframe(df, expected, window, min_periods):
# GH 11704
expected = [DataFrame(values, index=index) for (values, index) in expected]
for (expected, actual) in zip(
expected, df.rolling(window, min_periods=min_periods)
):
tm.assert_frame_equal(actual, expected)
@pytest.mark.parametrize(
"expected,window",
[
(
[
({"A": [1], "B": [4]}, [0]),
({"A": [1, 2], "B": [4, 5]}, [0, 1]),
({"A": [2, 3], "B": [5, 6]}, [1, 2]),
],
"2D",
),
(
[
({"A": [1], "B": [4]}, [0]),
({"A": [1, 2], "B": [4, 5]}, [0, 1]),
({"A": [1, 2, 3], "B": [4, 5, 6]}, [0, 1, 2]),
],
"3D",
),
(
[
({"A": [1], "B": [4]}, [0]),
({"A": [2], "B": [5]}, [1]),
({"A": [3], "B": [6]}, [2]),
],
"1D",
),
],
)
def test_iter_rolling_on_dataframe(expected, window):
# GH 11704
df = DataFrame(
{
"A": [1, 2, 3, 4, 5],
"B": [4, 5, 6, 7, 8],
"C": date_range(start="2016-01-01", periods=5, freq="D"),
}
)
expected = [DataFrame(values, index=index) for (values, index) in expected]
for (expected, actual) in zip(expected, df.rolling(window, on="C")):
tm.assert_frame_equal(actual, expected)
@pytest.mark.parametrize(
"ser,expected,window, min_periods",
[
(
Series([1, 2, 3]),
[([1], [0]), ([1, 2], [0, 1]), ([1, 2, 3], [0, 1, 2])],
3,
None,
),
(
Series([1, 2, 3]),
[([1], [0]), ([1, 2], [0, 1]), ([1, 2, 3], [0, 1, 2])],
3,
1,
),
(Series([1, 2, 3]), [([1], [0]), ([1, 2], [0, 1]), ([2, 3], [1, 2])], 2, 1),
(Series([1, 2, 3]), [([1], [0]), ([1, 2], [0, 1]), ([2, 3], [1, 2])], 2, 2),
(Series([1, 2, 3]), [([1], [0]), ([2], [1]), ([3], [2])], 1, 0),
(Series([1, 2, 3]), [([1], [0]), ([2], [1]), ([3], [2])], 1, 1),
(Series([1, 2]), [([1], [0]), ([1, 2], [0, 1])], 2, 0),
(Series([], dtype="int64"), [], 2, 1),
],
)
def test_iter_rolling_series(ser, expected, window, min_periods):
# GH 11704
expected = [Series(values, index=index) for (values, index) in expected]
for (expected, actual) in zip(
expected, ser.rolling(window, min_periods=min_periods)
):
tm.assert_series_equal(actual, expected)
@pytest.mark.parametrize(
"expected,expected_index,window",
[
(
[[0], [1], [2], [3], [4]],
[
date_range("2020-01-01", periods=1, freq="D"),
date_range("2020-01-02", periods=1, freq="D"),
date_range("2020-01-03", periods=1, freq="D"),
date_range("2020-01-04", periods=1, freq="D"),
date_range("2020-01-05", periods=1, freq="D"),
],
"1D",
),
(
[[0], [0, 1], [1, 2], [2, 3], [3, 4]],
[
date_range("2020-01-01", periods=1, freq="D"),
date_range("2020-01-01", periods=2, freq="D"),
date_range("2020-01-02", periods=2, freq="D"),
date_range("2020-01-03", periods=2, freq="D"),
date_range("2020-01-04", periods=2, freq="D"),
],
"2D",
),
(
[[0], [0, 1], [0, 1, 2], [1, 2, 3], [2, 3, 4]],
[
date_range("2020-01-01", periods=1, freq="D"),
date_range("2020-01-01", periods=2, freq="D"),
date_range("2020-01-01", periods=3, freq="D"),
date_range("2020-01-02", periods=3, freq="D"),
date_range("2020-01-03", periods=3, freq="D"),
],
"3D",
),
],
)
def test_iter_rolling_datetime(expected, expected_index, window):
# GH 11704
ser = Series(range(5), index=date_range(start="2020-01-01", periods=5, freq="D"))
expected = [
Series(values, index=idx) for (values, idx) in zip(expected, expected_index)
]
for (expected, actual) in zip(expected, ser.rolling(window)):
tm.assert_series_equal(actual, expected)
@pytest.mark.parametrize(
"grouping,_index",
[
(
{"level": 0},
MultiIndex.from_tuples(
[(0, 0), (0, 0), (1, 1), (1, 1), (1, 1)], names=[None, None]
),
),
(
{"by": "X"},
MultiIndex.from_tuples(
[(0, 0), (1, 0), (2, 1), (3, 1), (4, 1)], names=["X", None]
),
),
],
)
def test_rolling_positional_argument(grouping, _index, raw):
# GH 34605
def scaled_sum(*args):
if len(args) < 2:
raise ValueError("The function needs two arguments")
array, scale = args
return array.sum() / scale
df = DataFrame(data={"X": range(5)}, index=[0, 0, 1, 1, 1])
expected = DataFrame(data={"X": [0.0, 0.5, 1.0, 1.5, 2.0]}, index=_index)
result = df.groupby(**grouping).rolling(1).apply(scaled_sum, raw=raw, args=(2,))
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("add", [0.0, 2.0])
def test_rolling_numerical_accuracy_kahan_mean(add):
# GH: 36031 implementing kahan summation
df = DataFrame(
{"A": [3002399751580331.0 + add, -0.0, -0.0]},
index=[
Timestamp("19700101 09:00:00"),
Timestamp("19700101 09:00:03"),
Timestamp("19700101 09:00:06"),
],
)
result = (
df.resample("1s").ffill().rolling("3s", closed="left", min_periods=3).mean()
)
dates = date_range("19700101 09:00:00", periods=7, freq="S")
expected = DataFrame(
{
"A": [
np.nan,
np.nan,
np.nan,
3002399751580330.5,
2001599834386887.25,
1000799917193443.625,
0.0,
]
},
index=dates,
)
tm.assert_frame_equal(result, expected)
def test_rolling_numerical_accuracy_kahan_sum():
# GH: 13254
df = DataFrame([2.186, -1.647, 0.0, 0.0, 0.0, 0.0], columns=["x"])
result = df["x"].rolling(3).sum()
expected = Series([np.nan, np.nan, 0.539, -1.647, 0.0, 0.0], name="x")
tm.assert_series_equal(result, expected)
def test_rolling_numerical_accuracy_jump():
# GH: 32761
index = date_range(start="2020-01-01", end="2020-01-02", freq="60s").append(
DatetimeIndex(["2020-01-03"])
)
data = np.random.rand(len(index))
df = DataFrame({"data": data}, index=index)
result = df.rolling("60s").mean()
tm.assert_frame_equal(result, df[["data"]])
def test_rolling_numerical_accuracy_small_values():
# GH: 10319
s = Series(
data=[0.00012456, 0.0003, -0.0, -0.0],
index=date_range("1999-02-03", "1999-02-06"),
)
result = s.rolling(1).mean()
tm.assert_series_equal(result, s)
def test_rolling_numerical_too_large_numbers():
# GH: 11645
dates = date_range("2015-01-01", periods=10, freq="D")
ds = Series(data=range(10), index=dates, dtype=np.float64)
ds[2] = -9e33
result = ds.rolling(5).mean()
expected = Series(
[np.nan, np.nan, np.nan, np.nan, -1.8e33, -1.8e33, -1.8e33, 5.0, 6.0, 7.0],
index=dates,
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
("func", "value"),
[("sum", 2.0), ("max", 1.0), ("min", 1.0), ("mean", 1.0), ("median", 1.0)],
)
def test_rolling_mixed_dtypes_axis_1(func, value):
# GH: 20649
df = DataFrame(1, index=[1, 2], columns=["a", "b", "c"])
df["c"] = 1.0
result = getattr(df.rolling(window=2, min_periods=1, axis=1), func)()
expected = DataFrame(
{"a": [1.0, 1.0], "b": [value, value], "c": [value, value]}, index=[1, 2]
)
tm.assert_frame_equal(result, expected)
def test_rolling_axis_one_with_nan():
# GH: 35596
df = DataFrame(
[
[0, 1, 2, 4, np.nan, np.nan, np.nan],
[0, 1, 2, np.nan, np.nan, np.nan, np.nan],
[0, 2, 2, np.nan, 2, np.nan, 1],
]
)
result = df.rolling(window=7, min_periods=1, axis="columns").sum()
expected = DataFrame(
[
[0.0, 1.0, 3.0, 7.0, 7.0, 7.0, 7.0],
[0.0, 1.0, 3.0, 3.0, 3.0, 3.0, 3.0],
[0.0, 2.0, 4.0, 4.0, 6.0, 6.0, 7.0],
]
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"value",
["test", to_datetime("2019-12-31"), to_timedelta("1 days 06:05:01.00003")],
)
def test_rolling_axis_1_non_numeric_dtypes(value):
# GH: 20649
df = DataFrame({"a": [1, 2]})
df["b"] = value
result = df.rolling(window=2, min_periods=1, axis=1).sum()
expected = DataFrame({"a": [1.0, 2.0]})
tm.assert_frame_equal(result, expected)
def test_rolling_on_df_transposed():
# GH: 32724
df = DataFrame({"A": [1, None], "B": [4, 5], "C": [7, 8]})
expected = DataFrame({"A": [1.0, np.nan], "B": [5.0, 5.0], "C": [11.0, 13.0]})
result = df.rolling(min_periods=1, window=2, axis=1).sum()
tm.assert_frame_equal(result, expected)
result = df.T.rolling(min_periods=1, window=2).sum().T
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
("index", "window"),
[
(
period_range(start="2020-01-01 08:00", end="2020-01-01 08:08", freq="T"),
"2T",
),
(
period_range(start="2020-01-01 08:00", end="2020-01-01 12:00", freq="30T"),
"1h",
),
],
)
@pytest.mark.parametrize(
("func", "values"),
[
("min", [np.nan, 0, 0, 1, 2, 3, 4, 5, 6]),
("max", [np.nan, 0, 1, 2, 3, 4, 5, 6, 7]),
("sum", [np.nan, 0, 1, 3, 5, 7, 9, 11, 13]),
],
)
def test_rolling_period_index(index, window, func, values):
# GH: 34225
ds = Series([0, 1, 2, 3, 4, 5, 6, 7, 8], index=index)
result = getattr(ds.rolling(window, closed="left"), func)()
expected = Series(values, index=index)
tm.assert_series_equal(result, expected)
def test_rolling_sem(frame_or_series):
# GH: 26476
obj = frame_or_series([0, 1, 2])
result = obj.rolling(2, min_periods=1).sem()
if isinstance(result, DataFrame):
result = Series(result[0].values)
expected = Series([np.nan] + [0.707107] * 2)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
("func", "third_value", "values"),
[
("var", 1, [5e33, 0, 0.5, 0.5, 2, 0]),
("std", 1, [7.071068e16, 0, 0.7071068, 0.7071068, 1.414214, 0]),
("var", 2, [5e33, 0.5, 0, 0.5, 2, 0]),
("std", 2, [7.071068e16, 0.7071068, 0, 0.7071068, 1.414214, 0]),
],
)
def test_rolling_var_numerical_issues(func, third_value, values):
# GH: 37051
ds = Series([99999999999999999, 1, third_value, 2, 3, 1, 1])
result = getattr(ds.rolling(2), func)()
expected = Series([np.nan] + values)
tm.assert_series_equal(result, expected)
def test_timeoffset_as_window_parameter_for_corr():
# GH: 28266
exp = DataFrame(
{
"B": [
np.nan,
np.nan,
0.9999999999999998,
-1.0,
1.0,
-0.3273268353539892,
0.9999999999999998,
1.0,
0.9999999999999998,
1.0,
],
"A": [
np.nan,
np.nan,
-1.0,
1.0000000000000002,
-0.3273268353539892,
0.9999999999999966,
1.0,
1.0000000000000002,
1.0,
1.0000000000000002,
],
},
index=MultiIndex.from_tuples(
[
(Timestamp("20130101 09:00:00"), "B"),
(Timestamp("20130101 09:00:00"), "A"),
(Timestamp("20130102 09:00:02"), "B"),
(Timestamp("20130102 09:00:02"), "A"),
(Timestamp("20130103 09:00:03"), "B"),
(Timestamp("20130103 09:00:03"), "A"),
(Timestamp("20130105 09:00:05"), "B"),
(Timestamp("20130105 09:00:05"), "A"),
(Timestamp("20130106 09:00:06"), "B"),
(Timestamp("20130106 09:00:06"), "A"),
]
),
)
df = DataFrame(
{"B": [0, 1, 2, 4, 3], "A": [7, 4, 6, 9, 3]},
index=[
Timestamp("20130101 09:00:00"),
Timestamp("20130102 09:00:02"),
Timestamp("20130103 09:00:03"),
Timestamp("20130105 09:00:05"),
Timestamp("20130106 09:00:06"),
],
)
res = df.rolling(window="3d").corr()
tm.assert_frame_equal(exp, res)
@pytest.mark.parametrize("method", ["var", "sum", "mean", "skew", "kurt", "min", "max"])
def test_rolling_decreasing_indices(method):
"""
Make sure that decreasing indices give the same results as increasing indices.
GH 36933
"""
df = DataFrame({"values": np.arange(-15, 10) ** 2})
df_reverse = DataFrame({"values": df["values"][::-1]}, index=df.index[::-1])
increasing = getattr(df.rolling(window=5), method)()
decreasing = getattr(df_reverse.rolling(window=5), method)()
assert np.abs(decreasing.values[::-1][:-4] - increasing.values[4:]).max() < 1e-12
@pytest.mark.parametrize(
"method,expected",
[
(
"var",
[
float("nan"),
43.0,
float("nan"),
136.333333,
43.5,
94.966667,
182.0,
318.0,
],
),
("mean", [float("nan"), 7.5, float("nan"), 21.5, 6.0, 9.166667, 13.0, 17.5]),
("sum", [float("nan"), 30.0, float("nan"), 86.0, 30.0, 55.0, 91.0, 140.0]),
(
"skew",
[
float("nan"),
0.709296,
float("nan"),
0.407073,
0.984656,
0.919184,
0.874674,
0.842418,
],
),
(
"kurt",
[
float("nan"),
-0.5916711736073559,
float("nan"),
-1.0028993131317954,
-0.06103844629409494,
-0.254143227116194,
-0.37362637362637585,
-0.45439658241367054,
],
),
],
)
def test_rolling_non_monotonic(method, expected):
"""
Make sure the (rare) branch of non-monotonic indices is covered by a test.
output from 1.1.3 is assumed to be the expected output. Output of sum/mean has
manually been verified.
GH 36933.
"""
# Based on an example found in computation.rst
use_expanding = [True, False, True, False, True, True, True, True]
df = DataFrame({"values": np.arange(len(use_expanding)) ** 2})
class CustomIndexer(BaseIndexer):
def get_window_bounds(self, num_values, min_periods, center, closed):
start = np.empty(num_values, dtype=np.int64)
end = np.empty(num_values, dtype=np.int64)
for i in range(num_values):
if self.use_expanding[i]:
start[i] = 0
end[i] = i + 1
else:
start[i] = i
end[i] = i + self.window_size
return start, end
indexer = CustomIndexer(window_size=4, use_expanding=use_expanding)
result = getattr(df.rolling(indexer), method)()
expected = DataFrame({"values": expected})
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
("index", "window"),
[([0, 1, 2, 3, 4], 2), (date_range("2001-01-01", freq="D", periods=5), "2D")],
)
def test_rolling_corr_timedelta_index(index, window):
# GH: 31286
x = Series([1, 2, 3, 4, 5], index=index)
y = x.copy()
x[0:2] = 0.0
result = x.rolling(window).corr(y)
expected = Series([np.nan, np.nan, 1, 1, 1], index=index)
tm.assert_almost_equal(result, expected)
def test_groupby_rolling_nan_included():
# GH 35542
data = {"group": ["g1", np.nan, "g1", "g2", np.nan], "B": [0, 1, 2, 3, 4]}
df = DataFrame(data)
result = df.groupby("group", dropna=False).rolling(1, min_periods=1).mean()
expected = DataFrame(
{"B": [0.0, 2.0, 3.0, 1.0, 4.0]},
# GH-38057 from_tuples puts the NaNs in the codes, result expects them
# to be in the levels, at the moment
# index=MultiIndex.from_tuples(
# [("g1", 0), ("g1", 2), ("g2", 3), (np.nan, 1), (np.nan, 4)],
# names=["group", None],
# ),
index=MultiIndex(
[["g1", "g2", np.nan], [0, 1, 2, 3, 4]],
[[0, 0, 1, 2, 2], [0, 2, 3, 1, 4]],
names=["group", None],
),
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("method", ["skew", "kurt"])
def test_rolling_skew_kurt_numerical_stability(method):
# GH#6929
ser = Series(np.random.rand(10))
ser_copy = ser.copy()
expected = getattr(ser.rolling(3), method)()
tm.assert_series_equal(ser, ser_copy)
ser = ser + 50000
result = getattr(ser.rolling(3), method)()
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
("method", "values"),
[
("skew", [2.0, 0.854563, 0.0, 1.999984]),
("kurt", [4.0, -1.289256, -1.2, 3.999946]),
],
)
def test_rolling_skew_kurt_large_value_range(method, values):
# GH: 37557
s = Series([3000000, 1, 1, 2, 3, 4, 999])
result = getattr(s.rolling(4), method)()
expected = Series([np.nan] * 3 + values)
tm.assert_series_equal(result, expected)