projektAI/venv/Lib/site-packages/scipy/_lib/tests/test__util.py
2021-06-06 22:13:05 +02:00

243 lines
7.8 KiB
Python

from multiprocessing import Pool
from multiprocessing.pool import Pool as PWL
import os
import math
import numpy as np
from numpy.testing import assert_equal, assert_
import pytest
from pytest import raises as assert_raises, deprecated_call
import scipy
from scipy._lib._util import (_aligned_zeros, check_random_state, MapWrapper,
getfullargspec_no_self, FullArgSpec,
rng_integers)
def test__aligned_zeros():
niter = 10
def check(shape, dtype, order, align):
err_msg = repr((shape, dtype, order, align))
x = _aligned_zeros(shape, dtype, order, align=align)
if align is None:
align = np.dtype(dtype).alignment
assert_equal(x.__array_interface__['data'][0] % align, 0)
if hasattr(shape, '__len__'):
assert_equal(x.shape, shape, err_msg)
else:
assert_equal(x.shape, (shape,), err_msg)
assert_equal(x.dtype, dtype)
if order == "C":
assert_(x.flags.c_contiguous, err_msg)
elif order == "F":
if x.size > 0:
# Size-0 arrays get invalid flags on NumPy 1.5
assert_(x.flags.f_contiguous, err_msg)
elif order is None:
assert_(x.flags.c_contiguous, err_msg)
else:
raise ValueError()
# try various alignments
for align in [1, 2, 3, 4, 8, 16, 32, 64, None]:
for n in [0, 1, 3, 11]:
for order in ["C", "F", None]:
for dtype in [np.uint8, np.float64]:
for shape in [n, (1, 2, 3, n)]:
for j in range(niter):
check(shape, dtype, order, align)
def test_check_random_state():
# If seed is None, return the RandomState singleton used by np.random.
# If seed is an int, return a new RandomState instance seeded with seed.
# If seed is already a RandomState instance, return it.
# Otherwise raise ValueError.
rsi = check_random_state(1)
assert_equal(type(rsi), np.random.RandomState)
rsi = check_random_state(rsi)
assert_equal(type(rsi), np.random.RandomState)
rsi = check_random_state(None)
assert_equal(type(rsi), np.random.RandomState)
assert_raises(ValueError, check_random_state, 'a')
if hasattr(np.random, 'Generator'):
# np.random.Generator is only available in NumPy >= 1.17
rg = np.random.Generator(np.random.PCG64())
rsi = check_random_state(rg)
assert_equal(type(rsi), np.random.Generator)
def test_getfullargspec_no_self():
p = MapWrapper(1)
argspec = getfullargspec_no_self(p.__init__)
assert_equal(argspec, FullArgSpec(['pool'], None, None, (1,), [], None, {}))
argspec = getfullargspec_no_self(p.__call__)
assert_equal(argspec, FullArgSpec(['func', 'iterable'], None, None, None, [], None, {}))
class _rv_generic(object):
def _rvs(self, a, b=2, c=3, *args, size=None, **kwargs):
return None
rv_obj = _rv_generic()
argspec = getfullargspec_no_self(rv_obj._rvs)
assert_equal(argspec, FullArgSpec(['a', 'b', 'c'], 'args', 'kwargs', (2, 3), ['size'], {'size': None}, {}))
def test_mapwrapper_serial():
in_arg = np.arange(10.)
out_arg = np.sin(in_arg)
p = MapWrapper(1)
assert_(p._mapfunc is map)
assert_(p.pool is None)
assert_(p._own_pool is False)
out = list(p(np.sin, in_arg))
assert_equal(out, out_arg)
with assert_raises(RuntimeError):
p = MapWrapper(0)
def test_pool():
with Pool(2) as p:
p.map(math.sin, [1,2,3, 4])
def test_mapwrapper_parallel():
in_arg = np.arange(10.)
out_arg = np.sin(in_arg)
with MapWrapper(2) as p:
out = p(np.sin, in_arg)
assert_equal(list(out), out_arg)
assert_(p._own_pool is True)
assert_(isinstance(p.pool, PWL))
assert_(p._mapfunc is not None)
# the context manager should've closed the internal pool
# check that it has by asking it to calculate again.
with assert_raises(Exception) as excinfo:
p(np.sin, in_arg)
assert_(excinfo.type is ValueError)
# can also set a PoolWrapper up with a map-like callable instance
with Pool(2) as p:
q = MapWrapper(p.map)
assert_(q._own_pool is False)
q.close()
# closing the PoolWrapper shouldn't close the internal pool
# because it didn't create it
out = p.map(np.sin, in_arg)
assert_equal(list(out), out_arg)
# get our custom ones and a few from the "import *" cases
@pytest.mark.parametrize(
'key', ('ifft', 'diag', 'arccos', 'randn', 'rand', 'array'))
def test_numpy_deprecation(key):
"""Test that 'from numpy import *' functions are deprecated."""
if key in ('ifft', 'diag', 'arccos'):
arg = [1.0, 0.]
elif key == 'finfo':
arg = float
else:
arg = 2
func = getattr(scipy, key)
match = r'scipy\.%s is deprecated.*2\.0\.0' % key
with deprecated_call(match=match) as dep:
func(arg) # deprecated
# in case we catch more than one dep warning
fnames = [os.path.splitext(d.filename)[0] for d in dep.list]
basenames = [os.path.basename(fname) for fname in fnames]
assert 'test__util' in basenames
if key in ('rand', 'randn'):
root = np.random
elif key == 'ifft':
root = np.fft
else:
root = np
func_np = getattr(root, key)
func_np(arg) # not deprecated
assert func_np is not func
# classes should remain classes
if isinstance(func_np, type):
assert isinstance(func, type)
def test_numpy_deprecation_functionality():
# Check that the deprecation wrappers don't break basic NumPy
# functionality
with deprecated_call():
x = scipy.array([1, 2, 3], dtype=scipy.float64)
assert x.dtype == scipy.float64
assert x.dtype == np.float64
x = scipy.finfo(scipy.float32)
assert x.eps == np.finfo(np.float32).eps
assert scipy.float64 == np.float64
assert issubclass(np.float64, scipy.float64)
def test_rng_integers():
rng = np.random.RandomState()
# test that numbers are inclusive of high point
arr = rng_integers(rng, low=2, high=5, size=100, endpoint=True)
assert np.max(arr) == 5
assert np.min(arr) == 2
assert arr.shape == (100, )
# test that numbers are inclusive of high point
arr = rng_integers(rng, low=5, size=100, endpoint=True)
assert np.max(arr) == 5
assert np.min(arr) == 0
assert arr.shape == (100, )
# test that numbers are exclusive of high point
arr = rng_integers(rng, low=2, high=5, size=100, endpoint=False)
assert np.max(arr) == 4
assert np.min(arr) == 2
assert arr.shape == (100, )
# test that numbers are exclusive of high point
arr = rng_integers(rng, low=5, size=100, endpoint=False)
assert np.max(arr) == 4
assert np.min(arr) == 0
assert arr.shape == (100, )
# now try with np.random.Generator
try:
rng = np.random.default_rng()
except AttributeError:
return
# test that numbers are inclusive of high point
arr = rng_integers(rng, low=2, high=5, size=100, endpoint=True)
assert np.max(arr) == 5
assert np.min(arr) == 2
assert arr.shape == (100, )
# test that numbers are inclusive of high point
arr = rng_integers(rng, low=5, size=100, endpoint=True)
assert np.max(arr) == 5
assert np.min(arr) == 0
assert arr.shape == (100, )
# test that numbers are exclusive of high point
arr = rng_integers(rng, low=2, high=5, size=100, endpoint=False)
assert np.max(arr) == 4
assert np.min(arr) == 2
assert arr.shape == (100, )
# test that numbers are exclusive of high point
arr = rng_integers(rng, low=5, size=100, endpoint=False)
assert np.max(arr) == 4
assert np.min(arr) == 0
assert arr.shape == (100, )