projektAI/venv/Lib/site-packages/sklearn/decomposition/_kernel_pca.py
2021-06-06 22:13:05 +02:00

392 lines
15 KiB
Python

"""Kernel Principal Components Analysis."""
# Author: Mathieu Blondel <mathieu@mblondel.org>
# License: BSD 3 clause
import numpy as np
from scipy import linalg
from scipy.sparse.linalg import eigsh
from ..utils._arpack import _init_arpack_v0
from ..utils.extmath import svd_flip
from ..utils.validation import check_is_fitted, _check_psd_eigenvalues
from ..utils.deprecation import deprecated
from ..exceptions import NotFittedError
from ..base import BaseEstimator, TransformerMixin
from ..preprocessing import KernelCenterer
from ..metrics.pairwise import pairwise_kernels
from ..utils.validation import _deprecate_positional_args
class KernelPCA(TransformerMixin, BaseEstimator):
"""Kernel Principal component analysis (KPCA).
Non-linear dimensionality reduction through the use of kernels (see
:ref:`metrics`).
Read more in the :ref:`User Guide <kernel_PCA>`.
Parameters
----------
n_components : int, default=None
Number of components. If None, all non-zero components are kept.
kernel : {'linear', 'poly', \
'rbf', 'sigmoid', 'cosine', 'precomputed'}, default='linear'
Kernel used for PCA.
gamma : float, default=None
Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other
kernels. If ``gamma`` is ``None``, then it is set to ``1/n_features``.
degree : int, default=3
Degree for poly kernels. Ignored by other kernels.
coef0 : float, default=1
Independent term in poly and sigmoid kernels.
Ignored by other kernels.
kernel_params : dict, default=None
Parameters (keyword arguments) and
values for kernel passed as callable object.
Ignored by other kernels.
alpha : float, default=1.0
Hyperparameter of the ridge regression that learns the
inverse transform (when fit_inverse_transform=True).
fit_inverse_transform : bool, default=False
Learn the inverse transform for non-precomputed kernels.
(i.e. learn to find the pre-image of a point)
eigen_solver : {'auto', 'dense', 'arpack'}, default='auto'
Select eigensolver to use. If n_components is much less than
the number of training samples, arpack may be more efficient
than the dense eigensolver.
tol : float, default=0
Convergence tolerance for arpack.
If 0, optimal value will be chosen by arpack.
max_iter : int, default=None
Maximum number of iterations for arpack.
If None, optimal value will be chosen by arpack.
remove_zero_eig : bool, default=False
If True, then all components with zero eigenvalues are removed, so
that the number of components in the output may be < n_components
(and sometimes even zero due to numerical instability).
When n_components is None, this parameter is ignored and components
with zero eigenvalues are removed regardless.
random_state : int, RandomState instance or None, default=None
Used when ``eigen_solver`` == 'arpack'. Pass an int for reproducible
results across multiple function calls.
See :term:`Glossary <random_state>`.
.. versionadded:: 0.18
copy_X : bool, default=True
If True, input X is copied and stored by the model in the `X_fit_`
attribute. If no further changes will be done to X, setting
`copy_X=False` saves memory by storing a reference.
.. versionadded:: 0.18
n_jobs : int, default=None
The number of parallel jobs to run.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
.. versionadded:: 0.18
Attributes
----------
lambdas_ : ndarray of shape (n_components,)
Eigenvalues of the centered kernel matrix in decreasing order.
If `n_components` and `remove_zero_eig` are not set,
then all values are stored.
alphas_ : ndarray of shape (n_samples, n_components)
Eigenvectors of the centered kernel matrix. If `n_components` and
`remove_zero_eig` are not set, then all components are stored.
dual_coef_ : ndarray of shape (n_samples, n_features)
Inverse transform matrix. Only available when
``fit_inverse_transform`` is True.
X_transformed_fit_ : ndarray of shape (n_samples, n_components)
Projection of the fitted data on the kernel principal components.
Only available when ``fit_inverse_transform`` is True.
X_fit_ : ndarray of shape (n_samples, n_features)
The data used to fit the model. If `copy_X=False`, then `X_fit_` is
a reference. This attribute is used for the calls to transform.
Examples
--------
>>> from sklearn.datasets import load_digits
>>> from sklearn.decomposition import KernelPCA
>>> X, _ = load_digits(return_X_y=True)
>>> transformer = KernelPCA(n_components=7, kernel='linear')
>>> X_transformed = transformer.fit_transform(X)
>>> X_transformed.shape
(1797, 7)
References
----------
Kernel PCA was introduced in:
Bernhard Schoelkopf, Alexander J. Smola,
and Klaus-Robert Mueller. 1999. Kernel principal
component analysis. In Advances in kernel methods,
MIT Press, Cambridge, MA, USA 327-352.
"""
@_deprecate_positional_args
def __init__(self, n_components=None, *, kernel="linear",
gamma=None, degree=3, coef0=1, kernel_params=None,
alpha=1.0, fit_inverse_transform=False, eigen_solver='auto',
tol=0, max_iter=None, remove_zero_eig=False,
random_state=None, copy_X=True, n_jobs=None):
if fit_inverse_transform and kernel == 'precomputed':
raise ValueError(
"Cannot fit_inverse_transform with a precomputed kernel.")
self.n_components = n_components
self.kernel = kernel
self.kernel_params = kernel_params
self.gamma = gamma
self.degree = degree
self.coef0 = coef0
self.alpha = alpha
self.fit_inverse_transform = fit_inverse_transform
self.eigen_solver = eigen_solver
self.remove_zero_eig = remove_zero_eig
self.tol = tol
self.max_iter = max_iter
self.random_state = random_state
self.n_jobs = n_jobs
self.copy_X = copy_X
# TODO: Remove in 1.1
# mypy error: Decorated property not supported
@deprecated("Attribute _pairwise was deprecated in " # type: ignore
"version 0.24 and will be removed in 1.1 (renaming of 0.26).")
@property
def _pairwise(self):
return self.kernel == "precomputed"
def _get_kernel(self, X, Y=None):
if callable(self.kernel):
params = self.kernel_params or {}
else:
params = {"gamma": self.gamma,
"degree": self.degree,
"coef0": self.coef0}
return pairwise_kernels(X, Y, metric=self.kernel,
filter_params=True, n_jobs=self.n_jobs,
**params)
def _fit_transform(self, K):
""" Fit's using kernel K"""
# center kernel
K = self._centerer.fit_transform(K)
if self.n_components is None:
n_components = K.shape[0]
else:
n_components = min(K.shape[0], self.n_components)
# compute eigenvectors
if self.eigen_solver == 'auto':
if K.shape[0] > 200 and n_components < 10:
eigen_solver = 'arpack'
else:
eigen_solver = 'dense'
else:
eigen_solver = self.eigen_solver
if eigen_solver == 'dense':
self.lambdas_, self.alphas_ = linalg.eigh(
K, eigvals=(K.shape[0] - n_components, K.shape[0] - 1))
elif eigen_solver == 'arpack':
v0 = _init_arpack_v0(K.shape[0], self.random_state)
self.lambdas_, self.alphas_ = eigsh(K, n_components,
which="LA",
tol=self.tol,
maxiter=self.max_iter,
v0=v0)
# make sure that the eigenvalues are ok and fix numerical issues
self.lambdas_ = _check_psd_eigenvalues(self.lambdas_,
enable_warnings=False)
# flip eigenvectors' sign to enforce deterministic output
self.alphas_, _ = svd_flip(self.alphas_,
np.zeros_like(self.alphas_).T)
# sort eigenvectors in descending order
indices = self.lambdas_.argsort()[::-1]
self.lambdas_ = self.lambdas_[indices]
self.alphas_ = self.alphas_[:, indices]
# remove eigenvectors with a zero eigenvalue (null space) if required
if self.remove_zero_eig or self.n_components is None:
self.alphas_ = self.alphas_[:, self.lambdas_ > 0]
self.lambdas_ = self.lambdas_[self.lambdas_ > 0]
# Maintenance note on Eigenvectors normalization
# ----------------------------------------------
# there is a link between
# the eigenvectors of K=Phi(X)'Phi(X) and the ones of Phi(X)Phi(X)'
# if v is an eigenvector of K
# then Phi(X)v is an eigenvector of Phi(X)Phi(X)'
# if u is an eigenvector of Phi(X)Phi(X)'
# then Phi(X)'u is an eigenvector of Phi(X)'Phi(X)
#
# At this stage our self.alphas_ (the v) have norm 1, we need to scale
# them so that eigenvectors in kernel feature space (the u) have norm=1
# instead
#
# We COULD scale them here:
# self.alphas_ = self.alphas_ / np.sqrt(self.lambdas_)
#
# But choose to perform that LATER when needed, in `fit()` and in
# `transform()`.
return K
def _fit_inverse_transform(self, X_transformed, X):
if hasattr(X, "tocsr"):
raise NotImplementedError("Inverse transform not implemented for "
"sparse matrices!")
n_samples = X_transformed.shape[0]
K = self._get_kernel(X_transformed)
K.flat[::n_samples + 1] += self.alpha
self.dual_coef_ = linalg.solve(K, X, sym_pos=True, overwrite_a=True)
self.X_transformed_fit_ = X_transformed
def fit(self, X, y=None):
"""Fit the model from data in X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
self : object
Returns the instance itself.
"""
X = self._validate_data(X, accept_sparse='csr', copy=self.copy_X)
self._centerer = KernelCenterer()
K = self._get_kernel(X)
self._fit_transform(K)
if self.fit_inverse_transform:
# no need to use the kernel to transform X, use shortcut expression
X_transformed = self.alphas_ * np.sqrt(self.lambdas_)
self._fit_inverse_transform(X_transformed, X)
self.X_fit_ = X
return self
def fit_transform(self, X, y=None, **params):
"""Fit the model from data in X and transform X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
X_new : ndarray of shape (n_samples, n_components)
"""
self.fit(X, **params)
# no need to use the kernel to transform X, use shortcut expression
X_transformed = self.alphas_ * np.sqrt(self.lambdas_)
if self.fit_inverse_transform:
self._fit_inverse_transform(X_transformed, X)
return X_transformed
def transform(self, X):
"""Transform X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Returns
-------
X_new : ndarray of shape (n_samples, n_components)
"""
check_is_fitted(self)
X = self._validate_data(X, accept_sparse='csr', reset=False)
# Compute centered gram matrix between X and training data X_fit_
K = self._centerer.transform(self._get_kernel(X, self.X_fit_))
# scale eigenvectors (properly account for null-space for dot product)
non_zeros = np.flatnonzero(self.lambdas_)
scaled_alphas = np.zeros_like(self.alphas_)
scaled_alphas[:, non_zeros] = (self.alphas_[:, non_zeros]
/ np.sqrt(self.lambdas_[non_zeros]))
# Project with a scalar product between K and the scaled eigenvectors
return np.dot(K, scaled_alphas)
def inverse_transform(self, X):
"""Transform X back to original space.
``inverse_transform`` approximates the inverse transformation using
a learned pre-image. The pre-image is learned by kernel ridge
regression of the original data on their low-dimensional representation
vectors.
.. note:
:meth:`~sklearn.decomposition.fit` internally uses a centered
kernel. As the centered kernel no longer contains the information
of the mean of kernel features, such information is not taken into
account in reconstruction.
.. note::
When users want to compute inverse transformation for 'linear'
kernel, it is recommended that they use
:class:`~sklearn.decomposition.PCA` instead. Unlike
:class:`~sklearn.decomposition.PCA`,
:class:`~sklearn.decomposition.KernelPCA`'s ``inverse_transform``
does not reconstruct the mean of data when 'linear' kernel is used
due to the use of centered kernel.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_components)
Returns
-------
X_new : ndarray of shape (n_samples, n_features)
References
----------
"Learning to Find Pre-Images", G BakIr et al, 2004.
"""
if not self.fit_inverse_transform:
raise NotFittedError("The fit_inverse_transform parameter was not"
" set to True when instantiating and hence "
"the inverse transform is not available.")
K = self._get_kernel(X, self.X_transformed_fit_)
return np.dot(K, self.dual_coef_)
def _more_tags(self):
return {'preserves_dtype': [np.float64, np.float32],
'pairwise': self.kernel == 'precomputed'}