projektAI/venv/Lib/site-packages/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py
2021-06-06 22:13:05 +02:00

1478 lines
63 KiB
Python

"""Fast Gradient Boosting decision trees for classification and regression."""
# Author: Nicolas Hug
from abc import ABC, abstractmethod
from functools import partial
import numpy as np
from timeit import default_timer as time
from ...base import (BaseEstimator, RegressorMixin, ClassifierMixin,
is_classifier)
from ...utils import check_random_state, check_array, resample
from ...utils.validation import (check_is_fitted,
check_consistent_length,
_check_sample_weight,
_deprecate_positional_args)
from ...utils.multiclass import check_classification_targets
from ...metrics import check_scoring
from ...model_selection import train_test_split
from ...preprocessing import LabelEncoder
from ._gradient_boosting import _update_raw_predictions
from .common import Y_DTYPE, X_DTYPE, X_BINNED_DTYPE
from .binning import _BinMapper
from .grower import TreeGrower
from .loss import _LOSSES
from .loss import BaseLoss
class BaseHistGradientBoosting(BaseEstimator, ABC):
"""Base class for histogram-based gradient boosting estimators."""
@abstractmethod
def __init__(self, loss, *, learning_rate, max_iter, max_leaf_nodes,
max_depth, min_samples_leaf, l2_regularization, max_bins,
categorical_features, monotonic_cst,
warm_start, early_stopping, scoring,
validation_fraction, n_iter_no_change, tol, verbose,
random_state):
self.loss = loss
self.learning_rate = learning_rate
self.max_iter = max_iter
self.max_leaf_nodes = max_leaf_nodes
self.max_depth = max_depth
self.min_samples_leaf = min_samples_leaf
self.l2_regularization = l2_regularization
self.max_bins = max_bins
self.monotonic_cst = monotonic_cst
self.categorical_features = categorical_features
self.warm_start = warm_start
self.early_stopping = early_stopping
self.scoring = scoring
self.validation_fraction = validation_fraction
self.n_iter_no_change = n_iter_no_change
self.tol = tol
self.verbose = verbose
self.random_state = random_state
def _validate_parameters(self):
"""Validate parameters passed to __init__.
The parameters that are directly passed to the grower are checked in
TreeGrower."""
if (self.loss not in self._VALID_LOSSES and
not isinstance(self.loss, BaseLoss)):
raise ValueError(
"Loss {} is not supported for {}. Accepted losses: "
"{}.".format(self.loss, self.__class__.__name__,
', '.join(self._VALID_LOSSES)))
if self.learning_rate <= 0:
raise ValueError('learning_rate={} must '
'be strictly positive'.format(self.learning_rate))
if self.max_iter < 1:
raise ValueError('max_iter={} must not be smaller '
'than 1.'.format(self.max_iter))
if self.n_iter_no_change < 0:
raise ValueError('n_iter_no_change={} must be '
'positive.'.format(self.n_iter_no_change))
if (self.validation_fraction is not None and
self.validation_fraction <= 0):
raise ValueError(
'validation_fraction={} must be strictly '
'positive, or None.'.format(self.validation_fraction))
if self.tol is not None and self.tol < 0:
raise ValueError('tol={} '
'must not be smaller than 0.'.format(self.tol))
if not (2 <= self.max_bins <= 255):
raise ValueError('max_bins={} should be no smaller than 2 '
'and no larger than 255.'.format(self.max_bins))
if self.monotonic_cst is not None and self.n_trees_per_iteration_ != 1:
raise ValueError(
'monotonic constraints are not supported for '
'multiclass classification.'
)
def _check_categories(self, X):
"""Check and validate categorical features in X
Return
------
is_categorical : ndarray of shape (n_features,) or None, dtype=bool
Indicates whether a feature is categorical. If no feature is
categorical, this is None.
known_categories : list of size n_features or None
The list contains, for each feature:
- an array of shape (n_categories,) with the unique cat values
- None if the feature is not categorical
None if no feature is categorical.
"""
if self.categorical_features is None:
return None, None
categorical_features = np.asarray(self.categorical_features)
if categorical_features.size == 0:
return None, None
if categorical_features.dtype.kind not in ('i', 'b'):
raise ValueError("categorical_features must be an array-like of "
"bools or array-like of ints.")
n_features = X.shape[1]
# check for categorical features as indices
if categorical_features.dtype.kind == 'i':
if (np.max(categorical_features) >= n_features
or np.min(categorical_features) < 0):
raise ValueError("categorical_features set as integer "
"indices must be in [0, n_features - 1]")
is_categorical = np.zeros(n_features, dtype=bool)
is_categorical[categorical_features] = True
else:
if categorical_features.shape[0] != n_features:
raise ValueError("categorical_features set as a boolean mask "
"must have shape (n_features,), got: "
f"{categorical_features.shape}")
is_categorical = categorical_features
if not np.any(is_categorical):
return None, None
# compute the known categories in the training data. We need to do
# that here instead of in the BinMapper because in case of early
# stopping, the mapper only gets a fraction of the training data.
known_categories = []
for f_idx in range(n_features):
if is_categorical[f_idx]:
categories = np.unique(X[:, f_idx])
missing = np.isnan(categories)
if missing.any():
categories = categories[~missing]
if categories.size > self.max_bins:
raise ValueError(
f"Categorical feature at index {f_idx} is "
f"expected to have a "
f"cardinality <= {self.max_bins}"
)
if (categories >= self.max_bins).any():
raise ValueError(
f"Categorical feature at index {f_idx} is "
f"expected to be encoded with "
f"values < {self.max_bins}"
)
else:
categories = None
known_categories.append(categories)
return is_categorical, known_categories
def fit(self, X, y, sample_weight=None):
"""Fit the gradient boosting model.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
y : array-like of shape (n_samples,)
Target values.
sample_weight : array-like of shape (n_samples,) default=None
Weights of training data.
.. versionadded:: 0.23
Returns
-------
self : object
"""
fit_start_time = time()
acc_find_split_time = 0. # time spent finding the best splits
acc_apply_split_time = 0. # time spent splitting nodes
acc_compute_hist_time = 0. # time spent computing histograms
# time spent predicting X for gradient and hessians update
acc_prediction_time = 0.
X, y = self._validate_data(X, y, dtype=[X_DTYPE],
force_all_finite=False)
y = self._encode_y(y)
check_consistent_length(X, y)
# Do not create unit sample weights by default to later skip some
# computation
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X,
dtype=np.float64)
# TODO: remove when PDP suports sample weights
self._fitted_with_sw = True
rng = check_random_state(self.random_state)
# When warm starting, we want to re-use the same seed that was used
# the first time fit was called (e.g. for subsampling or for the
# train/val split).
if not (self.warm_start and self._is_fitted()):
self._random_seed = rng.randint(np.iinfo(np.uint32).max,
dtype='u8')
self._validate_parameters()
# used for validation in predict
n_samples, self._n_features = X.shape
self.is_categorical_, known_categories = self._check_categories(X)
# we need this stateful variable to tell raw_predict() that it was
# called from fit() (this current method), and that the data it has
# received is pre-binned.
# predicting is faster on pre-binned data, so we want early stopping
# predictions to be made on pre-binned data. Unfortunately the _scorer
# can only call predict() or predict_proba(), not raw_predict(), and
# there's no way to tell the scorer that it needs to predict binned
# data.
self._in_fit = True
if isinstance(self.loss, str):
self._loss = self._get_loss(sample_weight=sample_weight)
elif isinstance(self.loss, BaseLoss):
self._loss = self.loss
if self.early_stopping == 'auto':
self.do_early_stopping_ = n_samples > 10000
else:
self.do_early_stopping_ = self.early_stopping
# create validation data if needed
self._use_validation_data = self.validation_fraction is not None
if self.do_early_stopping_ and self._use_validation_data:
# stratify for classification
stratify = y if hasattr(self._loss, 'predict_proba') else None
# Save the state of the RNG for the training and validation split.
# This is needed in order to have the same split when using
# warm starting.
if sample_weight is None:
X_train, X_val, y_train, y_val = train_test_split(
X, y, test_size=self.validation_fraction,
stratify=stratify,
random_state=self._random_seed)
sample_weight_train = sample_weight_val = None
else:
# TODO: incorporate sample_weight in sampling here, as well as
# stratify
(X_train, X_val, y_train, y_val, sample_weight_train,
sample_weight_val) = train_test_split(
X, y, sample_weight, test_size=self.validation_fraction,
stratify=stratify,
random_state=self._random_seed)
else:
X_train, y_train, sample_weight_train = X, y, sample_weight
X_val = y_val = sample_weight_val = None
# Bin the data
# For ease of use of the API, the user-facing GBDT classes accept the
# parameter max_bins, which doesn't take into account the bin for
# missing values (which is always allocated). However, since max_bins
# isn't the true maximal number of bins, all other private classes
# (binmapper, histbuilder...) accept n_bins instead, which is the
# actual total number of bins. Everywhere in the code, the
# convention is that n_bins == max_bins + 1
n_bins = self.max_bins + 1 # + 1 for missing values
self._bin_mapper = _BinMapper(
n_bins=n_bins,
is_categorical=self.is_categorical_,
known_categories=known_categories,
random_state=self._random_seed)
X_binned_train = self._bin_data(X_train, is_training_data=True)
if X_val is not None:
X_binned_val = self._bin_data(X_val, is_training_data=False)
else:
X_binned_val = None
# Uses binned data to check for missing values
has_missing_values = (
X_binned_train == self._bin_mapper.missing_values_bin_idx_).any(
axis=0).astype(np.uint8)
if self.verbose:
print("Fitting gradient boosted rounds:")
n_samples = X_binned_train.shape[0]
# First time calling fit, or no warm start
if not (self._is_fitted() and self.warm_start):
# Clear random state and score attributes
self._clear_state()
# initialize raw_predictions: those are the accumulated values
# predicted by the trees for the training data. raw_predictions has
# shape (n_trees_per_iteration, n_samples) where
# n_trees_per_iterations is n_classes in multiclass classification,
# else 1.
self._baseline_prediction = self._loss.get_baseline_prediction(
y_train, sample_weight_train, self.n_trees_per_iteration_
)
raw_predictions = np.zeros(
shape=(self.n_trees_per_iteration_, n_samples),
dtype=self._baseline_prediction.dtype
)
raw_predictions += self._baseline_prediction
# predictors is a matrix (list of lists) of TreePredictor objects
# with shape (n_iter_, n_trees_per_iteration)
self._predictors = predictors = []
# Initialize structures and attributes related to early stopping
self._scorer = None # set if scoring != loss
raw_predictions_val = None # set if scoring == loss and use val
self.train_score_ = []
self.validation_score_ = []
if self.do_early_stopping_:
# populate train_score and validation_score with the
# predictions of the initial model (before the first tree)
if self.scoring == 'loss':
# we're going to compute scoring w.r.t the loss. As losses
# take raw predictions as input (unlike the scorers), we
# can optimize a bit and avoid repeating computing the
# predictions of the previous trees. We'll re-use
# raw_predictions (as it's needed for training anyway) for
# evaluating the training loss, and create
# raw_predictions_val for storing the raw predictions of
# the validation data.
if self._use_validation_data:
raw_predictions_val = np.zeros(
shape=(self.n_trees_per_iteration_,
X_binned_val.shape[0]),
dtype=self._baseline_prediction.dtype
)
raw_predictions_val += self._baseline_prediction
self._check_early_stopping_loss(raw_predictions, y_train,
sample_weight_train,
raw_predictions_val, y_val,
sample_weight_val)
else:
self._scorer = check_scoring(self, self.scoring)
# _scorer is a callable with signature (est, X, y) and
# calls est.predict() or est.predict_proba() depending on
# its nature.
# Unfortunately, each call to _scorer() will compute
# the predictions of all the trees. So we use a subset of
# the training set to compute train scores.
# Compute the subsample set
(X_binned_small_train,
y_small_train,
sample_weight_small_train) = self._get_small_trainset(
X_binned_train, y_train, sample_weight_train,
self._random_seed)
self._check_early_stopping_scorer(
X_binned_small_train, y_small_train,
sample_weight_small_train,
X_binned_val, y_val, sample_weight_val,
)
begin_at_stage = 0
# warm start: this is not the first time fit was called
else:
# Check that the maximum number of iterations is not smaller
# than the number of iterations from the previous fit
if self.max_iter < self.n_iter_:
raise ValueError(
'max_iter=%d must be larger than or equal to '
'n_iter_=%d when warm_start==True'
% (self.max_iter, self.n_iter_)
)
# Convert array attributes to lists
self.train_score_ = self.train_score_.tolist()
self.validation_score_ = self.validation_score_.tolist()
# Compute raw predictions
raw_predictions = self._raw_predict(X_binned_train)
if self.do_early_stopping_ and self._use_validation_data:
raw_predictions_val = self._raw_predict(X_binned_val)
else:
raw_predictions_val = None
if self.do_early_stopping_ and self.scoring != 'loss':
# Compute the subsample set
(X_binned_small_train,
y_small_train,
sample_weight_small_train) = self._get_small_trainset(
X_binned_train, y_train, sample_weight_train,
self._random_seed)
# Get the predictors from the previous fit
predictors = self._predictors
begin_at_stage = self.n_iter_
# initialize gradients and hessians (empty arrays).
# shape = (n_trees_per_iteration, n_samples).
gradients, hessians = self._loss.init_gradients_and_hessians(
n_samples=n_samples,
prediction_dim=self.n_trees_per_iteration_,
sample_weight=sample_weight_train
)
for iteration in range(begin_at_stage, self.max_iter):
if self.verbose:
iteration_start_time = time()
print("[{}/{}] ".format(iteration + 1, self.max_iter),
end='', flush=True)
# Update gradients and hessians, inplace
self._loss.update_gradients_and_hessians(gradients, hessians,
y_train, raw_predictions,
sample_weight_train)
# Append a list since there may be more than 1 predictor per iter
predictors.append([])
# Build `n_trees_per_iteration` trees.
for k in range(self.n_trees_per_iteration_):
grower = TreeGrower(
X_binned_train, gradients[k, :], hessians[k, :],
n_bins=n_bins,
n_bins_non_missing=self._bin_mapper.n_bins_non_missing_,
has_missing_values=has_missing_values,
is_categorical=self.is_categorical_,
monotonic_cst=self.monotonic_cst,
max_leaf_nodes=self.max_leaf_nodes,
max_depth=self.max_depth,
min_samples_leaf=self.min_samples_leaf,
l2_regularization=self.l2_regularization,
shrinkage=self.learning_rate)
grower.grow()
acc_apply_split_time += grower.total_apply_split_time
acc_find_split_time += grower.total_find_split_time
acc_compute_hist_time += grower.total_compute_hist_time
if self._loss.need_update_leaves_values:
self._loss.update_leaves_values(grower, y_train,
raw_predictions[k, :],
sample_weight_train)
predictor = grower.make_predictor(
binning_thresholds=self._bin_mapper.bin_thresholds_
)
predictors[-1].append(predictor)
# Update raw_predictions with the predictions of the newly
# created tree.
tic_pred = time()
_update_raw_predictions(raw_predictions[k, :], grower)
toc_pred = time()
acc_prediction_time += toc_pred - tic_pred
should_early_stop = False
if self.do_early_stopping_:
if self.scoring == 'loss':
# Update raw_predictions_val with the newest tree(s)
if self._use_validation_data:
for k, pred in enumerate(self._predictors[-1]):
raw_predictions_val[k, :] += (
pred.predict_binned(
X_binned_val,
self._bin_mapper.missing_values_bin_idx_
)
)
should_early_stop = self._check_early_stopping_loss(
raw_predictions, y_train, sample_weight_train,
raw_predictions_val, y_val, sample_weight_val
)
else:
should_early_stop = self._check_early_stopping_scorer(
X_binned_small_train, y_small_train,
sample_weight_small_train,
X_binned_val, y_val, sample_weight_val
)
if self.verbose:
self._print_iteration_stats(iteration_start_time)
# maybe we could also early stop if all the trees are stumps?
if should_early_stop:
break
if self.verbose:
duration = time() - fit_start_time
n_total_leaves = sum(
predictor.get_n_leaf_nodes()
for predictors_at_ith_iteration in self._predictors
for predictor in predictors_at_ith_iteration
)
n_predictors = sum(
len(predictors_at_ith_iteration)
for predictors_at_ith_iteration in self._predictors)
print("Fit {} trees in {:.3f} s, ({} total leaves)".format(
n_predictors, duration, n_total_leaves))
print("{:<32} {:.3f}s".format('Time spent computing histograms:',
acc_compute_hist_time))
print("{:<32} {:.3f}s".format('Time spent finding best splits:',
acc_find_split_time))
print("{:<32} {:.3f}s".format('Time spent applying splits:',
acc_apply_split_time))
print("{:<32} {:.3f}s".format('Time spent predicting:',
acc_prediction_time))
self.train_score_ = np.asarray(self.train_score_)
self.validation_score_ = np.asarray(self.validation_score_)
del self._in_fit # hard delete so we're sure it can't be used anymore
return self
def _is_fitted(self):
return len(getattr(self, '_predictors', [])) > 0
def _clear_state(self):
"""Clear the state of the gradient boosting model."""
for var in ('train_score_', 'validation_score_'):
if hasattr(self, var):
delattr(self, var)
def _get_small_trainset(self, X_binned_train, y_train, sample_weight_train,
seed):
"""Compute the indices of the subsample set and return this set.
For efficiency, we need to subsample the training set to compute scores
with scorers.
"""
# TODO: incorporate sample_weights here in `resample`
subsample_size = 10000
if X_binned_train.shape[0] > subsample_size:
indices = np.arange(X_binned_train.shape[0])
stratify = y_train if is_classifier(self) else None
indices = resample(indices, n_samples=subsample_size,
replace=False, random_state=seed,
stratify=stratify)
X_binned_small_train = X_binned_train[indices]
y_small_train = y_train[indices]
if sample_weight_train is not None:
sample_weight_small_train = sample_weight_train[indices]
else:
sample_weight_small_train = None
X_binned_small_train = np.ascontiguousarray(X_binned_small_train)
return (X_binned_small_train, y_small_train,
sample_weight_small_train)
else:
return X_binned_train, y_train, sample_weight_train
def _check_early_stopping_scorer(self, X_binned_small_train, y_small_train,
sample_weight_small_train,
X_binned_val, y_val, sample_weight_val):
"""Check if fitting should be early-stopped based on scorer.
Scores are computed on validation data or on training data.
"""
if is_classifier(self):
y_small_train = self.classes_[y_small_train.astype(int)]
if sample_weight_small_train is None:
self.train_score_.append(
self._scorer(self, X_binned_small_train, y_small_train)
)
else:
self.train_score_.append(
self._scorer(self, X_binned_small_train, y_small_train,
sample_weight=sample_weight_small_train)
)
if self._use_validation_data:
if is_classifier(self):
y_val = self.classes_[y_val.astype(int)]
if sample_weight_val is None:
self.validation_score_.append(
self._scorer(self, X_binned_val, y_val)
)
else:
self.validation_score_.append(
self._scorer(self, X_binned_val, y_val,
sample_weight=sample_weight_val)
)
return self._should_stop(self.validation_score_)
else:
return self._should_stop(self.train_score_)
def _check_early_stopping_loss(self,
raw_predictions,
y_train,
sample_weight_train,
raw_predictions_val,
y_val,
sample_weight_val):
"""Check if fitting should be early-stopped based on loss.
Scores are computed on validation data or on training data.
"""
self.train_score_.append(
-self._loss(y_train, raw_predictions, sample_weight_train)
)
if self._use_validation_data:
self.validation_score_.append(
-self._loss(y_val, raw_predictions_val, sample_weight_val)
)
return self._should_stop(self.validation_score_)
else:
return self._should_stop(self.train_score_)
def _should_stop(self, scores):
"""
Return True (do early stopping) if the last n scores aren't better
than the (n-1)th-to-last score, up to some tolerance.
"""
reference_position = self.n_iter_no_change + 1
if len(scores) < reference_position:
return False
# A higher score is always better. Higher tol means that it will be
# harder for subsequent iteration to be considered an improvement upon
# the reference score, and therefore it is more likely to early stop
# because of the lack of significant improvement.
tol = 0 if self.tol is None else self.tol
reference_score = scores[-reference_position] + tol
recent_scores = scores[-reference_position + 1:]
recent_improvements = [score > reference_score
for score in recent_scores]
return not any(recent_improvements)
def _bin_data(self, X, is_training_data):
"""Bin data X.
If is_training_data, then fit the _bin_mapper attribute.
Else, the binned data is converted to a C-contiguous array.
"""
description = 'training' if is_training_data else 'validation'
if self.verbose:
print("Binning {:.3f} GB of {} data: ".format(
X.nbytes / 1e9, description), end="", flush=True)
tic = time()
if is_training_data:
X_binned = self._bin_mapper.fit_transform(X) # F-aligned array
else:
X_binned = self._bin_mapper.transform(X) # F-aligned array
# We convert the array to C-contiguous since predicting is faster
# with this layout (training is faster on F-arrays though)
X_binned = np.ascontiguousarray(X_binned)
toc = time()
if self.verbose:
duration = toc - tic
print("{:.3f} s".format(duration))
return X_binned
def _print_iteration_stats(self, iteration_start_time):
"""Print info about the current fitting iteration."""
log_msg = ''
predictors_of_ith_iteration = [
predictors_list for predictors_list in self._predictors[-1]
if predictors_list
]
n_trees = len(predictors_of_ith_iteration)
max_depth = max(predictor.get_max_depth()
for predictor in predictors_of_ith_iteration)
n_leaves = sum(predictor.get_n_leaf_nodes()
for predictor in predictors_of_ith_iteration)
if n_trees == 1:
log_msg += ("{} tree, {} leaves, ".format(n_trees, n_leaves))
else:
log_msg += ("{} trees, {} leaves ".format(n_trees, n_leaves))
log_msg += ("({} on avg), ".format(int(n_leaves / n_trees)))
log_msg += "max depth = {}, ".format(max_depth)
if self.do_early_stopping_:
if self.scoring == 'loss':
factor = -1 # score_ arrays contain the negative loss
name = 'loss'
else:
factor = 1
name = 'score'
log_msg += "train {}: {:.5f}, ".format(name, factor *
self.train_score_[-1])
if self._use_validation_data:
log_msg += "val {}: {:.5f}, ".format(
name, factor * self.validation_score_[-1])
iteration_time = time() - iteration_start_time
log_msg += "in {:0.3f}s".format(iteration_time)
print(log_msg)
def _raw_predict(self, X):
"""Return the sum of the leaves values over all predictors.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
Returns
-------
raw_predictions : array, shape (n_trees_per_iteration, n_samples)
The raw predicted values.
"""
is_binned = getattr(self, '_in_fit', False)
dtype = X_BINNED_DTYPE if is_binned else X_DTYPE
X = check_array(X, dtype=dtype, force_all_finite=False)
check_is_fitted(self)
if X.shape[1] != self._n_features:
raise ValueError(
'X has {} features but this estimator was trained with '
'{} features.'.format(X.shape[1], self._n_features)
)
n_samples = X.shape[0]
raw_predictions = np.zeros(
shape=(self.n_trees_per_iteration_, n_samples),
dtype=self._baseline_prediction.dtype
)
raw_predictions += self._baseline_prediction
self._predict_iterations(
X, self._predictors, raw_predictions, is_binned
)
return raw_predictions
def _predict_iterations(self, X, predictors, raw_predictions, is_binned):
"""Add the predictions of the predictors to raw_predictions."""
if not is_binned:
known_cat_bitsets, f_idx_map = (
self._bin_mapper.make_known_categories_bitsets())
for predictors_of_ith_iteration in predictors:
for k, predictor in enumerate(predictors_of_ith_iteration):
if is_binned:
predict = partial(
predictor.predict_binned,
missing_values_bin_idx=self._bin_mapper.missing_values_bin_idx_ # noqa
)
else:
predict = partial(
predictor.predict,
known_cat_bitsets=known_cat_bitsets,
f_idx_map=f_idx_map)
raw_predictions[k, :] += predict(X)
def _staged_raw_predict(self, X):
"""Compute raw predictions of ``X`` for each iteration.
This method allows monitoring (i.e. determine error on testing set)
after each stage.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
Yields
-------
raw_predictions : generator of ndarray of shape \
(n_trees_per_iteration, n_samples)
The raw predictions of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
"""
X = check_array(X, dtype=X_DTYPE, force_all_finite=False)
check_is_fitted(self)
if X.shape[1] != self._n_features:
raise ValueError(
'X has {} features but this estimator was trained with '
'{} features.'.format(X.shape[1], self._n_features)
)
n_samples = X.shape[0]
raw_predictions = np.zeros(
shape=(self.n_trees_per_iteration_, n_samples),
dtype=self._baseline_prediction.dtype
)
raw_predictions += self._baseline_prediction
for iteration in range(len(self._predictors)):
self._predict_iterations(
X,
self._predictors[iteration:iteration + 1],
raw_predictions,
is_binned=False
)
yield raw_predictions.copy()
def _compute_partial_dependence_recursion(self, grid, target_features):
"""Fast partial dependence computation.
Parameters
----------
grid : ndarray, shape (n_samples, n_target_features)
The grid points on which the partial dependence should be
evaluated.
target_features : ndarray, shape (n_target_features)
The set of target features for which the partial dependence
should be evaluated.
Returns
-------
averaged_predictions : ndarray, shape \
(n_trees_per_iteration, n_samples)
The value of the partial dependence function on each grid point.
"""
if getattr(self, '_fitted_with_sw', False):
raise NotImplementedError("{} does not support partial dependence "
"plots with the 'recursion' method when "
"sample weights were given during fit "
"time.".format(self.__class__.__name__))
grid = np.asarray(grid, dtype=X_DTYPE, order='C')
averaged_predictions = np.zeros(
(self.n_trees_per_iteration_, grid.shape[0]), dtype=Y_DTYPE)
for predictors_of_ith_iteration in self._predictors:
for k, predictor in enumerate(predictors_of_ith_iteration):
predictor.compute_partial_dependence(grid, target_features,
averaged_predictions[k])
# Note that the learning rate is already accounted for in the leaves
# values.
return averaged_predictions
def _more_tags(self):
return {'allow_nan': True}
@abstractmethod
def _get_loss(self, sample_weight):
pass
@abstractmethod
def _encode_y(self, y=None):
pass
@property
def n_iter_(self):
check_is_fitted(self)
return len(self._predictors)
class HistGradientBoostingRegressor(RegressorMixin, BaseHistGradientBoosting):
"""Histogram-based Gradient Boosting Regression Tree.
This estimator is much faster than
:class:`GradientBoostingRegressor<sklearn.ensemble.GradientBoostingRegressor>`
for big datasets (n_samples >= 10 000).
This estimator has native support for missing values (NaNs). During
training, the tree grower learns at each split point whether samples
with missing values should go to the left or right child, based on the
potential gain. When predicting, samples with missing values are
assigned to the left or right child consequently. If no missing values
were encountered for a given feature during training, then samples with
missing values are mapped to whichever child has the most samples.
This implementation is inspired by
`LightGBM <https://github.com/Microsoft/LightGBM>`_.
.. note::
This estimator is still **experimental** for now: the predictions
and the API might change without any deprecation cycle. To use it,
you need to explicitly import ``enable_hist_gradient_boosting``::
>>> # explicitly require this experimental feature
>>> from sklearn.experimental import enable_hist_gradient_boosting # noqa
>>> # now you can import normally from ensemble
>>> from sklearn.ensemble import HistGradientBoostingRegressor
Read more in the :ref:`User Guide <histogram_based_gradient_boosting>`.
.. versionadded:: 0.21
Parameters
----------
loss : {'least_squares', 'least_absolute_deviation', 'poisson'}, \
default='least_squares'
The loss function to use in the boosting process. Note that the
"least squares" and "poisson" losses actually implement
"half least squares loss" and "half poisson deviance" to simplify the
computation of the gradient. Furthermore, "poisson" loss internally
uses a log-link and requires ``y >= 0``
.. versionchanged:: 0.23
Added option 'poisson'.
learning_rate : float, default=0.1
The learning rate, also known as *shrinkage*. This is used as a
multiplicative factor for the leaves values. Use ``1`` for no
shrinkage.
max_iter : int, default=100
The maximum number of iterations of the boosting process, i.e. the
maximum number of trees.
max_leaf_nodes : int or None, default=31
The maximum number of leaves for each tree. Must be strictly greater
than 1. If None, there is no maximum limit.
max_depth : int or None, default=None
The maximum depth of each tree. The depth of a tree is the number of
edges to go from the root to the deepest leaf.
Depth isn't constrained by default.
min_samples_leaf : int, default=20
The minimum number of samples per leaf. For small datasets with less
than a few hundred samples, it is recommended to lower this value
since only very shallow trees would be built.
l2_regularization : float, default=0
The L2 regularization parameter. Use ``0`` for no regularization
(default).
max_bins : int, default=255
The maximum number of bins to use for non-missing values. Before
training, each feature of the input array `X` is binned into
integer-valued bins, which allows for a much faster training stage.
Features with a small number of unique values may use less than
``max_bins`` bins. In addition to the ``max_bins`` bins, one more bin
is always reserved for missing values. Must be no larger than 255.
categorical_features : array-like of {bool, int} of shape (n_features) \
or shape (n_categorical_features,), default=None.
Indicates the categorical features.
- None : no feature will be considered categorical.
- boolean array-like : boolean mask indicating categorical features.
- integer array-like : integer indices indicating categorical
features.
For each categorical feature, there must be at most `max_bins` unique
categories, and each categorical value must be in [0, max_bins -1].
Read more in the :ref:`User Guide <categorical_support_gbdt>`.
.. versionadded:: 0.24
monotonic_cst : array-like of int of shape (n_features), default=None
Indicates the monotonic constraint to enforce on each feature. -1, 1
and 0 respectively correspond to a negative constraint, positive
constraint and no constraint. Read more in the :ref:`User Guide
<monotonic_cst_gbdt>`.
.. versionadded:: 0.23
warm_start : bool, default=False
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble. For results to be valid, the
estimator should be re-trained on the same data only.
See :term:`the Glossary <warm_start>`.
early_stopping : 'auto' or bool, default='auto'
If 'auto', early stopping is enabled if the sample size is larger than
10000. If True, early stopping is enabled, otherwise early stopping is
disabled.
.. versionadded:: 0.23
scoring : str or callable or None, default='loss'
Scoring parameter to use for early stopping. It can be a single
string (see :ref:`scoring_parameter`) or a callable (see
:ref:`scoring`). If None, the estimator's default scorer is used. If
``scoring='loss'``, early stopping is checked w.r.t the loss value.
Only used if early stopping is performed.
validation_fraction : int or float or None, default=0.1
Proportion (or absolute size) of training data to set aside as
validation data for early stopping. If None, early stopping is done on
the training data. Only used if early stopping is performed.
n_iter_no_change : int, default=10
Used to determine when to "early stop". The fitting process is
stopped when none of the last ``n_iter_no_change`` scores are better
than the ``n_iter_no_change - 1`` -th-to-last one, up to some
tolerance. Only used if early stopping is performed.
tol : float or None, default=1e-7
The absolute tolerance to use when comparing scores during early
stopping. The higher the tolerance, the more likely we are to early
stop: higher tolerance means that it will be harder for subsequent
iterations to be considered an improvement upon the reference score.
verbose : int, default=0
The verbosity level. If not zero, print some information about the
fitting process.
random_state : int, RandomState instance or None, default=None
Pseudo-random number generator to control the subsampling in the
binning process, and the train/validation data split if early stopping
is enabled.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
Attributes
----------
do_early_stopping_ : bool
Indicates whether early stopping is used during training.
n_iter_ : int
The number of iterations as selected by early stopping, depending on
the `early_stopping` parameter. Otherwise it corresponds to max_iter.
n_trees_per_iteration_ : int
The number of tree that are built at each iteration. For regressors,
this is always 1.
train_score_ : ndarray, shape (n_iter_+1,)
The scores at each iteration on the training data. The first entry
is the score of the ensemble before the first iteration. Scores are
computed according to the ``scoring`` parameter. If ``scoring`` is
not 'loss', scores are computed on a subset of at most 10 000
samples. Empty if no early stopping.
validation_score_ : ndarray, shape (n_iter_+1,)
The scores at each iteration on the held-out validation data. The
first entry is the score of the ensemble before the first iteration.
Scores are computed according to the ``scoring`` parameter. Empty if
no early stopping or if ``validation_fraction`` is None.
is_categorical_ : ndarray, shape (n_features, ) or None
Boolean mask for the categorical features. ``None`` if there are no
categorical features.
Examples
--------
>>> # To use this experimental feature, we need to explicitly ask for it:
>>> from sklearn.experimental import enable_hist_gradient_boosting # noqa
>>> from sklearn.ensemble import HistGradientBoostingRegressor
>>> from sklearn.datasets import load_diabetes
>>> X, y = load_diabetes(return_X_y=True)
>>> est = HistGradientBoostingRegressor().fit(X, y)
>>> est.score(X, y)
0.92...
"""
_VALID_LOSSES = ('least_squares', 'least_absolute_deviation',
'poisson')
@_deprecate_positional_args
def __init__(self, loss='least_squares', *, learning_rate=0.1,
max_iter=100, max_leaf_nodes=31, max_depth=None,
min_samples_leaf=20, l2_regularization=0., max_bins=255,
categorical_features=None, monotonic_cst=None,
warm_start=False, early_stopping='auto',
scoring='loss', validation_fraction=0.1,
n_iter_no_change=10, tol=1e-7,
verbose=0, random_state=None):
super(HistGradientBoostingRegressor, self).__init__(
loss=loss, learning_rate=learning_rate, max_iter=max_iter,
max_leaf_nodes=max_leaf_nodes, max_depth=max_depth,
min_samples_leaf=min_samples_leaf,
l2_regularization=l2_regularization, max_bins=max_bins,
monotonic_cst=monotonic_cst,
categorical_features=categorical_features,
early_stopping=early_stopping,
warm_start=warm_start, scoring=scoring,
validation_fraction=validation_fraction,
n_iter_no_change=n_iter_no_change, tol=tol, verbose=verbose,
random_state=random_state)
def predict(self, X):
"""Predict values for X.
Parameters
----------
X : array-like, shape (n_samples, n_features)
The input samples.
Returns
-------
y : ndarray, shape (n_samples,)
The predicted values.
"""
check_is_fitted(self)
# Return inverse link of raw predictions after converting
# shape (n_samples, 1) to (n_samples,)
return self._loss.inverse_link_function(self._raw_predict(X).ravel())
def staged_predict(self, X):
"""Predict regression target for each iteration
This method allows monitoring (i.e. determine error on testing set)
after each stage.
.. versionadded:: 0.24
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
Yields
-------
y : generator of ndarray of shape (n_samples,)
The predicted values of the input samples, for each iteration.
"""
for raw_predictions in self._staged_raw_predict(X):
yield self._loss.inverse_link_function(raw_predictions.ravel())
def _encode_y(self, y):
# Just convert y to the expected dtype
self.n_trees_per_iteration_ = 1
y = y.astype(Y_DTYPE, copy=False)
if self.loss == 'poisson':
# Ensure y >= 0 and sum(y) > 0
if not (np.all(y >= 0) and np.sum(y) > 0):
raise ValueError("loss='poisson' requires non-negative y and "
"sum(y) > 0.")
return y
def _get_loss(self, sample_weight):
return _LOSSES[self.loss](sample_weight=sample_weight)
class HistGradientBoostingClassifier(ClassifierMixin,
BaseHistGradientBoosting):
"""Histogram-based Gradient Boosting Classification Tree.
This estimator is much faster than
:class:`GradientBoostingClassifier<sklearn.ensemble.GradientBoostingClassifier>`
for big datasets (n_samples >= 10 000).
This estimator has native support for missing values (NaNs). During
training, the tree grower learns at each split point whether samples
with missing values should go to the left or right child, based on the
potential gain. When predicting, samples with missing values are
assigned to the left or right child consequently. If no missing values
were encountered for a given feature during training, then samples with
missing values are mapped to whichever child has the most samples.
This implementation is inspired by
`LightGBM <https://github.com/Microsoft/LightGBM>`_.
.. note::
This estimator is still **experimental** for now: the predictions
and the API might change without any deprecation cycle. To use it,
you need to explicitly import ``enable_hist_gradient_boosting``::
>>> # explicitly require this experimental feature
>>> from sklearn.experimental import enable_hist_gradient_boosting # noqa
>>> # now you can import normally from ensemble
>>> from sklearn.ensemble import HistGradientBoostingClassifier
Read more in the :ref:`User Guide <histogram_based_gradient_boosting>`.
.. versionadded:: 0.21
Parameters
----------
loss : {'auto', 'binary_crossentropy', 'categorical_crossentropy'}, \
default='auto'
The loss function to use in the boosting process. 'binary_crossentropy'
(also known as logistic loss) is used for binary classification and
generalizes to 'categorical_crossentropy' for multiclass
classification. 'auto' will automatically choose either loss depending
on the nature of the problem.
learning_rate : float, default=0.1
The learning rate, also known as *shrinkage*. This is used as a
multiplicative factor for the leaves values. Use ``1`` for no
shrinkage.
max_iter : int, default=100
The maximum number of iterations of the boosting process, i.e. the
maximum number of trees for binary classification. For multiclass
classification, `n_classes` trees per iteration are built.
max_leaf_nodes : int or None, default=31
The maximum number of leaves for each tree. Must be strictly greater
than 1. If None, there is no maximum limit.
max_depth : int or None, default=None
The maximum depth of each tree. The depth of a tree is the number of
edges to go from the root to the deepest leaf.
Depth isn't constrained by default.
min_samples_leaf : int, default=20
The minimum number of samples per leaf. For small datasets with less
than a few hundred samples, it is recommended to lower this value
since only very shallow trees would be built.
l2_regularization : float, default=0
The L2 regularization parameter. Use 0 for no regularization.
max_bins : int, default=255
The maximum number of bins to use for non-missing values. Before
training, each feature of the input array `X` is binned into
integer-valued bins, which allows for a much faster training stage.
Features with a small number of unique values may use less than
``max_bins`` bins. In addition to the ``max_bins`` bins, one more bin
is always reserved for missing values. Must be no larger than 255.
categorical_features : array-like of {bool, int} of shape (n_features) \
or shape (n_categorical_features,), default=None.
Indicates the categorical features.
- None : no feature will be considered categorical.
- boolean array-like : boolean mask indicating categorical features.
- integer array-like : integer indices indicating categorical
features.
For each categorical feature, there must be at most `max_bins` unique
categories, and each categorical value must be in [0, max_bins -1].
Read more in the :ref:`User Guide <categorical_support_gbdt>`.
.. versionadded:: 0.24
monotonic_cst : array-like of int of shape (n_features), default=None
Indicates the monotonic constraint to enforce on each feature. -1, 1
and 0 respectively correspond to a negative constraint, positive
constraint and no constraint. Read more in the :ref:`User Guide
<monotonic_cst_gbdt>`.
.. versionadded:: 0.23
warm_start : bool, default=False
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble. For results to be valid, the
estimator should be re-trained on the same data only.
See :term:`the Glossary <warm_start>`.
early_stopping : 'auto' or bool, default='auto'
If 'auto', early stopping is enabled if the sample size is larger than
10000. If True, early stopping is enabled, otherwise early stopping is
disabled.
.. versionadded:: 0.23
scoring : str or callable or None, default='loss'
Scoring parameter to use for early stopping. It can be a single
string (see :ref:`scoring_parameter`) or a callable (see
:ref:`scoring`). If None, the estimator's default scorer
is used. If ``scoring='loss'``, early stopping is checked
w.r.t the loss value. Only used if early stopping is performed.
validation_fraction : int or float or None, default=0.1
Proportion (or absolute size) of training data to set aside as
validation data for early stopping. If None, early stopping is done on
the training data. Only used if early stopping is performed.
n_iter_no_change : int, default=10
Used to determine when to "early stop". The fitting process is
stopped when none of the last ``n_iter_no_change`` scores are better
than the ``n_iter_no_change - 1`` -th-to-last one, up to some
tolerance. Only used if early stopping is performed.
tol : float or None, default=1e-7
The absolute tolerance to use when comparing scores. The higher the
tolerance, the more likely we are to early stop: higher tolerance
means that it will be harder for subsequent iterations to be
considered an improvement upon the reference score.
verbose : int, default=0
The verbosity level. If not zero, print some information about the
fitting process.
random_state : int, RandomState instance or None, default=None
Pseudo-random number generator to control the subsampling in the
binning process, and the train/validation data split if early stopping
is enabled.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
Attributes
----------
classes_ : array, shape = (n_classes,)
Class labels.
do_early_stopping_ : bool
Indicates whether early stopping is used during training.
n_iter_ : int
The number of iterations as selected by early stopping, depending on
the `early_stopping` parameter. Otherwise it corresponds to max_iter.
n_trees_per_iteration_ : int
The number of tree that are built at each iteration. This is equal to 1
for binary classification, and to ``n_classes`` for multiclass
classification.
train_score_ : ndarray, shape (n_iter_+1,)
The scores at each iteration on the training data. The first entry
is the score of the ensemble before the first iteration. Scores are
computed according to the ``scoring`` parameter. If ``scoring`` is
not 'loss', scores are computed on a subset of at most 10 000
samples. Empty if no early stopping.
validation_score_ : ndarray, shape (n_iter_+1,)
The scores at each iteration on the held-out validation data. The
first entry is the score of the ensemble before the first iteration.
Scores are computed according to the ``scoring`` parameter. Empty if
no early stopping or if ``validation_fraction`` is None.
is_categorical_ : ndarray, shape (n_features, ) or None
Boolean mask for the categorical features. ``None`` if there are no
categorical features.
Examples
--------
>>> # To use this experimental feature, we need to explicitly ask for it:
>>> from sklearn.experimental import enable_hist_gradient_boosting # noqa
>>> from sklearn.ensemble import HistGradientBoostingClassifier
>>> from sklearn.datasets import load_iris
>>> X, y = load_iris(return_X_y=True)
>>> clf = HistGradientBoostingClassifier().fit(X, y)
>>> clf.score(X, y)
1.0
"""
_VALID_LOSSES = ('binary_crossentropy', 'categorical_crossentropy',
'auto')
@_deprecate_positional_args
def __init__(self, loss='auto', *, learning_rate=0.1, max_iter=100,
max_leaf_nodes=31, max_depth=None, min_samples_leaf=20,
l2_regularization=0., max_bins=255,
categorical_features=None, monotonic_cst=None,
warm_start=False, early_stopping='auto', scoring='loss',
validation_fraction=0.1, n_iter_no_change=10, tol=1e-7,
verbose=0, random_state=None):
super(HistGradientBoostingClassifier, self).__init__(
loss=loss, learning_rate=learning_rate, max_iter=max_iter,
max_leaf_nodes=max_leaf_nodes, max_depth=max_depth,
min_samples_leaf=min_samples_leaf,
l2_regularization=l2_regularization, max_bins=max_bins,
categorical_features=categorical_features,
monotonic_cst=monotonic_cst,
warm_start=warm_start,
early_stopping=early_stopping, scoring=scoring,
validation_fraction=validation_fraction,
n_iter_no_change=n_iter_no_change, tol=tol, verbose=verbose,
random_state=random_state)
def predict(self, X):
"""Predict classes for X.
Parameters
----------
X : array-like, shape (n_samples, n_features)
The input samples.
Returns
-------
y : ndarray, shape (n_samples,)
The predicted classes.
"""
# TODO: This could be done in parallel
encoded_classes = np.argmax(self.predict_proba(X), axis=1)
return self.classes_[encoded_classes]
def staged_predict(self, X):
"""Predict classes at each iteration.
This method allows monitoring (i.e. determine error on testing set)
after each stage.
.. versionadded:: 0.24
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
Yields
-------
y : generator of ndarray of shape (n_samples,)
The predicted classes of the input samples, for each iteration.
"""
for proba in self.staged_predict_proba(X):
encoded_classes = np.argmax(proba, axis=1)
yield self.classes_.take(encoded_classes, axis=0)
def predict_proba(self, X):
"""Predict class probabilities for X.
Parameters
----------
X : array-like, shape (n_samples, n_features)
The input samples.
Returns
-------
p : ndarray, shape (n_samples, n_classes)
The class probabilities of the input samples.
"""
raw_predictions = self._raw_predict(X)
return self._loss.predict_proba(raw_predictions)
def staged_predict_proba(self, X):
"""Predict class probabilities at each iteration.
This method allows monitoring (i.e. determine error on testing set)
after each stage.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
Yields
-------
y : generator of ndarray of shape (n_samples,)
The predicted class probabilities of the input samples,
for each iteration.
"""
for raw_predictions in self._staged_raw_predict(X):
yield self._loss.predict_proba(raw_predictions)
def decision_function(self, X):
"""Compute the decision function of ``X``.
Parameters
----------
X : array-like, shape (n_samples, n_features)
The input samples.
Returns
-------
decision : ndarray, shape (n_samples,) or \
(n_samples, n_trees_per_iteration)
The raw predicted values (i.e. the sum of the trees leaves) for
each sample. n_trees_per_iteration is equal to the number of
classes in multiclass classification.
"""
decision = self._raw_predict(X)
if decision.shape[0] == 1:
decision = decision.ravel()
return decision.T
def staged_decision_function(self, X):
"""Compute decision function of ``X`` for each iteration.
This method allows monitoring (i.e. determine error on testing set)
after each stage.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
Yields
-------
decision : generator of ndarray of shape (n_samples,) or \
(n_samples, n_trees_per_iteration)
The decision function of the input samples, which corresponds to
the raw values predicted from the trees of the ensemble . The
classes corresponds to that in the attribute :term:`classes_`.
"""
for staged_decision in self._staged_raw_predict(X):
if staged_decision.shape[0] == 1:
staged_decision = staged_decision.ravel()
yield staged_decision.T
def _encode_y(self, y):
# encode classes into 0 ... n_classes - 1 and sets attributes classes_
# and n_trees_per_iteration_
check_classification_targets(y)
label_encoder = LabelEncoder()
encoded_y = label_encoder.fit_transform(y)
self.classes_ = label_encoder.classes_
n_classes = self.classes_.shape[0]
# only 1 tree for binary classification. For multiclass classification,
# we build 1 tree per class.
self.n_trees_per_iteration_ = 1 if n_classes <= 2 else n_classes
encoded_y = encoded_y.astype(Y_DTYPE, copy=False)
return encoded_y
def _get_loss(self, sample_weight):
if (self.loss == 'categorical_crossentropy' and
self.n_trees_per_iteration_ == 1):
raise ValueError("'categorical_crossentropy' is not suitable for "
"a binary classification problem. Please use "
"'auto' or 'binary_crossentropy' instead.")
if self.loss == 'auto':
if self.n_trees_per_iteration_ == 1:
return _LOSSES['binary_crossentropy'](
sample_weight=sample_weight)
else:
return _LOSSES['categorical_crossentropy'](
sample_weight=sample_weight)
return _LOSSES[self.loss](sample_weight=sample_weight)