278 lines
9.8 KiB
Python
278 lines
9.8 KiB
Python
from itertools import product
|
|
|
|
import numpy as np
|
|
|
|
from .. import confusion_matrix
|
|
from ...utils import check_matplotlib_support
|
|
from ...utils.multiclass import unique_labels
|
|
from ...utils.validation import _deprecate_positional_args
|
|
from ...base import is_classifier
|
|
|
|
|
|
class ConfusionMatrixDisplay:
|
|
"""Confusion Matrix visualization.
|
|
|
|
It is recommend to use :func:`~sklearn.metrics.plot_confusion_matrix` to
|
|
create a :class:`ConfusionMatrixDisplay`. All parameters are stored as
|
|
attributes.
|
|
|
|
Read more in the :ref:`User Guide <visualizations>`.
|
|
|
|
Parameters
|
|
----------
|
|
confusion_matrix : ndarray of shape (n_classes, n_classes)
|
|
Confusion matrix.
|
|
|
|
display_labels : ndarray of shape (n_classes,), default=None
|
|
Display labels for plot. If None, display labels are set from 0 to
|
|
`n_classes - 1`.
|
|
|
|
Attributes
|
|
----------
|
|
im_ : matplotlib AxesImage
|
|
Image representing the confusion matrix.
|
|
|
|
text_ : ndarray of shape (n_classes, n_classes), dtype=matplotlib Text, \
|
|
or None
|
|
Array of matplotlib axes. `None` if `include_values` is false.
|
|
|
|
ax_ : matplotlib Axes
|
|
Axes with confusion matrix.
|
|
|
|
figure_ : matplotlib Figure
|
|
Figure containing the confusion matrix.
|
|
|
|
See Also
|
|
--------
|
|
confusion_matrix : Compute Confusion Matrix to evaluate the accuracy of a
|
|
classification.
|
|
ConfusionMatrixDisplay.from_estimator : Plot the confusion matrix
|
|
given an estimator, the data, and the label.
|
|
ConfusionMatrixDisplay.from_predictions : Plot the confusion matrix
|
|
given the true and predicted labels.
|
|
|
|
Examples
|
|
--------
|
|
>>> from sklearn.datasets import make_classification
|
|
>>> from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
|
|
>>> from sklearn.model_selection import train_test_split
|
|
>>> from sklearn.svm import SVC
|
|
>>> X, y = make_classification(random_state=0)
|
|
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
|
|
... random_state=0)
|
|
>>> clf = SVC(random_state=0)
|
|
>>> clf.fit(X_train, y_train)
|
|
SVC(random_state=0)
|
|
>>> predictions = clf.predict(X_test)
|
|
>>> cm = confusion_matrix(y_test, predictions, labels=clf.classes_)
|
|
>>> disp = ConfusionMatrixDisplay(confusion_matrix=cm,
|
|
... display_labels=clf.classes_)
|
|
>>> disp.plot() # doctest: +SKIP
|
|
"""
|
|
@_deprecate_positional_args
|
|
def __init__(self, confusion_matrix, *, display_labels=None):
|
|
self.confusion_matrix = confusion_matrix
|
|
self.display_labels = display_labels
|
|
|
|
@_deprecate_positional_args
|
|
def plot(self, *, include_values=True, cmap='viridis',
|
|
xticks_rotation='horizontal', values_format=None,
|
|
ax=None, colorbar=True):
|
|
"""Plot visualization.
|
|
|
|
Parameters
|
|
----------
|
|
include_values : bool, default=True
|
|
Includes values in confusion matrix.
|
|
|
|
cmap : str or matplotlib Colormap, default='viridis'
|
|
Colormap recognized by matplotlib.
|
|
|
|
xticks_rotation : {'vertical', 'horizontal'} or float, \
|
|
default='horizontal'
|
|
Rotation of xtick labels.
|
|
|
|
values_format : str, default=None
|
|
Format specification for values in confusion matrix. If `None`,
|
|
the format specification is 'd' or '.2g' whichever is shorter.
|
|
|
|
ax : matplotlib axes, default=None
|
|
Axes object to plot on. If `None`, a new figure and axes is
|
|
created.
|
|
|
|
colorbar : bool, default=True
|
|
Whether or not to add a colorbar to the plot.
|
|
|
|
Returns
|
|
-------
|
|
display : :class:`~sklearn.metrics.ConfusionMatrixDisplay`
|
|
"""
|
|
check_matplotlib_support("ConfusionMatrixDisplay.plot")
|
|
import matplotlib.pyplot as plt
|
|
|
|
if ax is None:
|
|
fig, ax = plt.subplots()
|
|
else:
|
|
fig = ax.figure
|
|
|
|
cm = self.confusion_matrix
|
|
n_classes = cm.shape[0]
|
|
self.im_ = ax.imshow(cm, interpolation='nearest', cmap=cmap)
|
|
self.text_ = None
|
|
cmap_min, cmap_max = self.im_.cmap(0), self.im_.cmap(256)
|
|
|
|
if include_values:
|
|
self.text_ = np.empty_like(cm, dtype=object)
|
|
|
|
# print text with appropriate color depending on background
|
|
thresh = (cm.max() + cm.min()) / 2.0
|
|
|
|
for i, j in product(range(n_classes), range(n_classes)):
|
|
color = cmap_max if cm[i, j] < thresh else cmap_min
|
|
|
|
if values_format is None:
|
|
text_cm = format(cm[i, j], '.2g')
|
|
if cm.dtype.kind != 'f':
|
|
text_d = format(cm[i, j], 'd')
|
|
if len(text_d) < len(text_cm):
|
|
text_cm = text_d
|
|
else:
|
|
text_cm = format(cm[i, j], values_format)
|
|
|
|
self.text_[i, j] = ax.text(
|
|
j, i, text_cm,
|
|
ha="center", va="center",
|
|
color=color)
|
|
|
|
if self.display_labels is None:
|
|
display_labels = np.arange(n_classes)
|
|
else:
|
|
display_labels = self.display_labels
|
|
if colorbar:
|
|
fig.colorbar(self.im_, ax=ax)
|
|
ax.set(xticks=np.arange(n_classes),
|
|
yticks=np.arange(n_classes),
|
|
xticklabels=display_labels,
|
|
yticklabels=display_labels,
|
|
ylabel="True label",
|
|
xlabel="Predicted label")
|
|
|
|
ax.set_ylim((n_classes - 0.5, -0.5))
|
|
plt.setp(ax.get_xticklabels(), rotation=xticks_rotation)
|
|
|
|
self.figure_ = fig
|
|
self.ax_ = ax
|
|
return self
|
|
|
|
|
|
@_deprecate_positional_args
|
|
def plot_confusion_matrix(estimator, X, y_true, *, labels=None,
|
|
sample_weight=None, normalize=None,
|
|
display_labels=None, include_values=True,
|
|
xticks_rotation='horizontal',
|
|
values_format=None,
|
|
cmap='viridis', ax=None, colorbar=True):
|
|
"""Plot Confusion Matrix.
|
|
|
|
Read more in the :ref:`User Guide <confusion_matrix>`.
|
|
|
|
Parameters
|
|
----------
|
|
estimator : estimator instance
|
|
Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
|
|
in which the last estimator is a classifier.
|
|
|
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
|
Input values.
|
|
|
|
y_true : array-like of shape (n_samples,)
|
|
Target values.
|
|
|
|
labels : array-like of shape (n_classes,), default=None
|
|
List of labels to index the matrix. This may be used to reorder or
|
|
select a subset of labels. If `None` is given, those that appear at
|
|
least once in `y_true` or `y_pred` are used in sorted order.
|
|
|
|
sample_weight : array-like of shape (n_samples,), default=None
|
|
Sample weights.
|
|
|
|
normalize : {'true', 'pred', 'all'}, default=None
|
|
Normalizes confusion matrix over the true (rows), predicted (columns)
|
|
conditions or all the population. If None, confusion matrix will not be
|
|
normalized.
|
|
|
|
display_labels : array-like of shape (n_classes,), default=None
|
|
Target names used for plotting. By default, `labels` will be used if
|
|
it is defined, otherwise the unique labels of `y_true` and `y_pred`
|
|
will be used.
|
|
|
|
include_values : bool, default=True
|
|
Includes values in confusion matrix.
|
|
|
|
xticks_rotation : {'vertical', 'horizontal'} or float, \
|
|
default='horizontal'
|
|
Rotation of xtick labels.
|
|
|
|
values_format : str, default=None
|
|
Format specification for values in confusion matrix. If `None`,
|
|
the format specification is 'd' or '.2g' whichever is shorter.
|
|
|
|
cmap : str or matplotlib Colormap, default='viridis'
|
|
Colormap recognized by matplotlib.
|
|
|
|
ax : matplotlib Axes, default=None
|
|
Axes object to plot on. If `None`, a new figure and axes is
|
|
created.
|
|
|
|
colorbar : bool, default=True
|
|
Whether or not to add a colorbar to the plot.
|
|
|
|
.. versionadded:: 0.24
|
|
|
|
Returns
|
|
-------
|
|
display : :class:`~sklearn.metrics.ConfusionMatrixDisplay`
|
|
|
|
See Also
|
|
--------
|
|
confusion_matrix : Compute Confusion Matrix to evaluate the accuracy of a
|
|
classification.
|
|
ConfusionMatrixDisplay : Confusion Matrix visualization.
|
|
|
|
Examples
|
|
--------
|
|
>>> import matplotlib.pyplot as plt # doctest: +SKIP
|
|
>>> from sklearn.datasets import make_classification
|
|
>>> from sklearn.metrics import plot_confusion_matrix
|
|
>>> from sklearn.model_selection import train_test_split
|
|
>>> from sklearn.svm import SVC
|
|
>>> X, y = make_classification(random_state=0)
|
|
>>> X_train, X_test, y_train, y_test = train_test_split(
|
|
... X, y, random_state=0)
|
|
>>> clf = SVC(random_state=0)
|
|
>>> clf.fit(X_train, y_train)
|
|
SVC(random_state=0)
|
|
>>> plot_confusion_matrix(clf, X_test, y_test) # doctest: +SKIP
|
|
>>> plt.show() # doctest: +SKIP
|
|
"""
|
|
check_matplotlib_support("plot_confusion_matrix")
|
|
|
|
if not is_classifier(estimator):
|
|
raise ValueError("plot_confusion_matrix only supports classifiers")
|
|
|
|
y_pred = estimator.predict(X)
|
|
cm = confusion_matrix(y_true, y_pred, sample_weight=sample_weight,
|
|
labels=labels, normalize=normalize)
|
|
|
|
if display_labels is None:
|
|
if labels is None:
|
|
display_labels = unique_labels(y_true, y_pred)
|
|
else:
|
|
display_labels = labels
|
|
|
|
disp = ConfusionMatrixDisplay(confusion_matrix=cm,
|
|
display_labels=display_labels)
|
|
return disp.plot(include_values=include_values,
|
|
cmap=cmap, ax=ax, xticks_rotation=xticks_rotation,
|
|
values_format=values_format, colorbar=colorbar)
|