projektAI/venv/Lib/site-packages/pandas/core/sorting.py
2021-06-06 22:13:05 +02:00

630 lines
19 KiB
Python

""" miscellaneous sorting / groupby utilities """
from collections import defaultdict
from typing import (
TYPE_CHECKING,
Callable,
DefaultDict,
Dict,
Iterable,
List,
Optional,
Sequence,
Tuple,
Union,
)
import numpy as np
from pandas._libs import algos, hashtable, lib
from pandas._libs.hashtable import unique_label_indices
from pandas._typing import IndexKeyFunc
from pandas.core.dtypes.common import (
ensure_int64,
ensure_platform_int,
is_extension_array_dtype,
)
from pandas.core.dtypes.generic import ABCMultiIndex
from pandas.core.dtypes.missing import isna
import pandas.core.algorithms as algorithms
from pandas.core.construction import extract_array
if TYPE_CHECKING:
from pandas import MultiIndex
from pandas.core.indexes.base import Index
_INT64_MAX = np.iinfo(np.int64).max
def get_indexer_indexer(
target: "Index",
level: Union[str, int, List[str], List[int]],
ascending: Union[Sequence[Union[bool, int]], Union[bool, int]],
kind: str,
na_position: str,
sort_remaining: bool,
key: IndexKeyFunc,
) -> Optional[np.array]:
"""
Helper method that return the indexer according to input parameters for
the sort_index method of DataFrame and Series.
Parameters
----------
target : Index
level : int or level name or list of ints or list of level names
ascending : bool or list of bools, default True
kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'
na_position : {'first', 'last'}, default 'last'
sort_remaining : bool, default True
key : callable, optional
Returns
-------
Optional[ndarray]
The indexer for the new index.
"""
target = ensure_key_mapped(target, key, levels=level)
target = target._sort_levels_monotonic()
if level is not None:
_, indexer = target.sortlevel(
level, ascending=ascending, sort_remaining=sort_remaining
)
elif isinstance(target, ABCMultiIndex):
indexer = lexsort_indexer(
target._get_codes_for_sorting(), orders=ascending, na_position=na_position
)
else:
# Check monotonic-ness before sort an index (GH 11080)
if (ascending and target.is_monotonic_increasing) or (
not ascending and target.is_monotonic_decreasing
):
return None
indexer = nargsort(
target, kind=kind, ascending=ascending, na_position=na_position
)
return indexer
def get_group_index(labels, shape, sort: bool, xnull: bool):
"""
For the particular label_list, gets the offsets into the hypothetical list
representing the totally ordered cartesian product of all possible label
combinations, *as long as* this space fits within int64 bounds;
otherwise, though group indices identify unique combinations of
labels, they cannot be deconstructed.
- If `sort`, rank of returned ids preserve lexical ranks of labels.
i.e. returned id's can be used to do lexical sort on labels;
- If `xnull` nulls (-1 labels) are passed through.
Parameters
----------
labels : sequence of arrays
Integers identifying levels at each location
shape : sequence of ints
Number of unique levels at each location
sort : bool
If the ranks of returned ids should match lexical ranks of labels
xnull : bool
If true nulls are excluded. i.e. -1 values in the labels are
passed through.
Returns
-------
An array of type int64 where two elements are equal if their corresponding
labels are equal at all location.
Notes
-----
The length of `labels` and `shape` must be identical.
"""
def _int64_cut_off(shape) -> int:
acc = 1
for i, mul in enumerate(shape):
acc *= int(mul)
if not acc < _INT64_MAX:
return i
return len(shape)
def maybe_lift(lab, size):
# promote nan values (assigned -1 label in lab array)
# so that all output values are non-negative
return (lab + 1, size + 1) if (lab == -1).any() else (lab, size)
labels = map(ensure_int64, labels)
if not xnull:
labels, shape = map(list, zip(*map(maybe_lift, labels, shape)))
labels = list(labels)
shape = list(shape)
# Iteratively process all the labels in chunks sized so less
# than _INT64_MAX unique int ids will be required for each chunk
while True:
# how many levels can be done without overflow:
nlev = _int64_cut_off(shape)
# compute flat ids for the first `nlev` levels
stride = np.prod(shape[1:nlev], dtype="i8")
out = stride * labels[0].astype("i8", subok=False, copy=False)
for i in range(1, nlev):
if shape[i] == 0:
stride = 0
else:
stride //= shape[i]
out += labels[i] * stride
if xnull: # exclude nulls
mask = labels[0] == -1
for lab in labels[1:nlev]:
mask |= lab == -1
out[mask] = -1
if nlev == len(shape): # all levels done!
break
# compress what has been done so far in order to avoid overflow
# to retain lexical ranks, obs_ids should be sorted
comp_ids, obs_ids = compress_group_index(out, sort=sort)
labels = [comp_ids] + labels[nlev:]
shape = [len(obs_ids)] + shape[nlev:]
return out
def get_compressed_ids(labels, sizes):
"""
Group_index is offsets into cartesian product of all possible labels. This
space can be huge, so this function compresses it, by computing offsets
(comp_ids) into the list of unique labels (obs_group_ids).
Parameters
----------
labels : list of label arrays
sizes : list of size of the levels
Returns
-------
tuple of (comp_ids, obs_group_ids)
"""
ids = get_group_index(labels, sizes, sort=True, xnull=False)
return compress_group_index(ids, sort=True)
def is_int64_overflow_possible(shape) -> bool:
the_prod = 1
for x in shape:
the_prod *= int(x)
return the_prod >= _INT64_MAX
def decons_group_index(comp_labels, shape):
# reconstruct labels
if is_int64_overflow_possible(shape):
# at some point group indices are factorized,
# and may not be deconstructed here! wrong path!
raise ValueError("cannot deconstruct factorized group indices!")
label_list = []
factor = 1
y = 0
x = comp_labels
for i in reversed(range(len(shape))):
labels = (x - y) % (factor * shape[i]) // factor
np.putmask(labels, comp_labels < 0, -1)
label_list.append(labels)
y = labels * factor
factor *= shape[i]
return label_list[::-1]
def decons_obs_group_ids(comp_ids, obs_ids, shape, labels, xnull: bool):
"""
Reconstruct labels from observed group ids.
Parameters
----------
xnull : bool
If nulls are excluded; i.e. -1 labels are passed through.
"""
if not xnull:
lift = np.fromiter(((a == -1).any() for a in labels), dtype="i8")
shape = np.asarray(shape, dtype="i8") + lift
if not is_int64_overflow_possible(shape):
# obs ids are deconstructable! take the fast route!
out = decons_group_index(obs_ids, shape)
return out if xnull or not lift.any() else [x - y for x, y in zip(out, lift)]
i = unique_label_indices(comp_ids)
i8copy = lambda a: a.astype("i8", subok=False, copy=True)
return [i8copy(lab[i]) for lab in labels]
def indexer_from_factorized(labels, shape, compress: bool = True):
ids = get_group_index(labels, shape, sort=True, xnull=False)
if not compress:
ngroups = (ids.size and ids.max()) + 1
else:
ids, obs = compress_group_index(ids, sort=True)
ngroups = len(obs)
return get_group_index_sorter(ids, ngroups)
def lexsort_indexer(
keys, orders=None, na_position: str = "last", key: Optional[Callable] = None
):
"""
Performs lexical sorting on a set of keys
Parameters
----------
keys : sequence of arrays
Sequence of ndarrays to be sorted by the indexer
orders : boolean or list of booleans, optional
Determines the sorting order for each element in keys. If a list,
it must be the same length as keys. This determines whether the
corresponding element in keys should be sorted in ascending
(True) or descending (False) order. if bool, applied to all
elements as above. if None, defaults to True.
na_position : {'first', 'last'}, default 'last'
Determines placement of NA elements in the sorted list ("last" or "first")
key : Callable, optional
Callable key function applied to every element in keys before sorting
.. versionadded:: 1.0.0
"""
from pandas.core.arrays import Categorical
labels = []
shape = []
if isinstance(orders, bool):
orders = [orders] * len(keys)
elif orders is None:
orders = [True] * len(keys)
keys = [ensure_key_mapped(k, key) for k in keys]
for k, order in zip(keys, orders):
cat = Categorical(k, ordered=True)
if na_position not in ["last", "first"]:
raise ValueError(f"invalid na_position: {na_position}")
n = len(cat.categories)
codes = cat.codes.copy()
mask = cat.codes == -1
if order: # ascending
if na_position == "last":
codes = np.where(mask, n, codes)
elif na_position == "first":
codes += 1
else: # not order means descending
if na_position == "last":
codes = np.where(mask, n, n - codes - 1)
elif na_position == "first":
codes = np.where(mask, 0, n - codes)
if mask.any():
n += 1
shape.append(n)
labels.append(codes)
return indexer_from_factorized(labels, shape)
def nargsort(
items,
kind: str = "quicksort",
ascending: bool = True,
na_position: str = "last",
key: Optional[Callable] = None,
mask: Optional[np.ndarray] = None,
):
"""
Intended to be a drop-in replacement for np.argsort which handles NaNs.
Adds ascending, na_position, and key parameters.
(GH #6399, #5231, #27237)
Parameters
----------
kind : str, default 'quicksort'
ascending : bool, default True
na_position : {'first', 'last'}, default 'last'
key : Optional[Callable], default None
mask : Optional[np.ndarray], default None
Passed when called by ExtensionArray.argsort.
"""
if key is not None:
items = ensure_key_mapped(items, key)
return nargsort(
items,
kind=kind,
ascending=ascending,
na_position=na_position,
key=None,
mask=mask,
)
items = extract_array(items)
if mask is None:
mask = np.asarray(isna(items))
if is_extension_array_dtype(items):
return items.argsort(ascending=ascending, kind=kind, na_position=na_position)
else:
items = np.asanyarray(items)
idx = np.arange(len(items))
non_nans = items[~mask]
non_nan_idx = idx[~mask]
nan_idx = np.nonzero(mask)[0]
if not ascending:
non_nans = non_nans[::-1]
non_nan_idx = non_nan_idx[::-1]
indexer = non_nan_idx[non_nans.argsort(kind=kind)]
if not ascending:
indexer = indexer[::-1]
# Finally, place the NaNs at the end or the beginning according to
# na_position
if na_position == "last":
indexer = np.concatenate([indexer, nan_idx])
elif na_position == "first":
indexer = np.concatenate([nan_idx, indexer])
else:
raise ValueError(f"invalid na_position: {na_position}")
return indexer
def nargminmax(values, method: str):
"""
Implementation of np.argmin/argmax but for ExtensionArray and which
handles missing values.
Parameters
----------
values : ExtensionArray
method : {"argmax", "argmin"}
Returns
-------
int
"""
assert method in {"argmax", "argmin"}
func = np.argmax if method == "argmax" else np.argmin
mask = np.asarray(isna(values))
values = values._values_for_argsort()
idx = np.arange(len(values))
non_nans = values[~mask]
non_nan_idx = idx[~mask]
return non_nan_idx[func(non_nans)]
def _ensure_key_mapped_multiindex(
index: "MultiIndex", key: Callable, level=None
) -> "MultiIndex":
"""
Returns a new MultiIndex in which key has been applied
to all levels specified in level (or all levels if level
is None). Used for key sorting for MultiIndex.
Parameters
----------
index : MultiIndex
Index to which to apply the key function on the
specified levels.
key : Callable
Function that takes an Index and returns an Index of
the same shape. This key is applied to each level
separately. The name of the level can be used to
distinguish different levels for application.
level : list-like, int or str, default None
Level or list of levels to apply the key function to.
If None, key function is applied to all levels. Other
levels are left unchanged.
Returns
-------
labels : MultiIndex
Resulting MultiIndex with modified levels.
"""
if level is not None:
if isinstance(level, (str, int)):
sort_levels = [level]
else:
sort_levels = level
sort_levels = [index._get_level_number(lev) for lev in sort_levels]
else:
sort_levels = list(range(index.nlevels)) # satisfies mypy
mapped = [
ensure_key_mapped(index._get_level_values(level), key)
if level in sort_levels
else index._get_level_values(level)
for level in range(index.nlevels)
]
labels = type(index).from_arrays(mapped)
return labels
def ensure_key_mapped(values, key: Optional[Callable], levels=None):
"""
Applies a callable key function to the values function and checks
that the resulting value has the same shape. Can be called on Index
subclasses, Series, DataFrames, or ndarrays.
Parameters
----------
values : Series, DataFrame, Index subclass, or ndarray
key : Optional[Callable], key to be called on the values array
levels : Optional[List], if values is a MultiIndex, list of levels to
apply the key to.
"""
from pandas.core.indexes.api import Index
if not key:
return values
if isinstance(values, ABCMultiIndex):
return _ensure_key_mapped_multiindex(values, key, level=levels)
result = key(values.copy())
if len(result) != len(values):
raise ValueError(
"User-provided `key` function must not change the shape of the array."
)
try:
if isinstance(
values, Index
): # convert to a new Index subclass, not necessarily the same
result = Index(result)
else:
type_of_values = type(values)
result = type_of_values(result) # try to revert to original type otherwise
except TypeError:
raise TypeError(
f"User-provided `key` function returned an invalid type {type(result)} \
which could not be converted to {type(values)}."
)
return result
def get_flattened_list(
comp_ids: np.ndarray,
ngroups: int,
levels: Iterable["Index"],
labels: Iterable[np.ndarray],
) -> List[Tuple]:
"""Map compressed group id -> key tuple."""
comp_ids = comp_ids.astype(np.int64, copy=False)
arrays: DefaultDict[int, List[int]] = defaultdict(list)
for labs, level in zip(labels, levels):
table = hashtable.Int64HashTable(ngroups)
table.map(comp_ids, labs.astype(np.int64, copy=False))
for i in range(ngroups):
arrays[i].append(level[table.get_item(i)])
return [tuple(array) for array in arrays.values()]
def get_indexer_dict(
label_list: List[np.ndarray], keys: List["Index"]
) -> Dict[Union[str, Tuple], np.ndarray]:
"""
Returns
-------
dict:
Labels mapped to indexers.
"""
shape = [len(x) for x in keys]
group_index = get_group_index(label_list, shape, sort=True, xnull=True)
if np.all(group_index == -1):
# When all keys are nan and dropna=True, indices_fast can't handle this
# and the return is empty anyway
return {}
ngroups = (
((group_index.size and group_index.max()) + 1)
if is_int64_overflow_possible(shape)
else np.prod(shape, dtype="i8")
)
sorter = get_group_index_sorter(group_index, ngroups)
sorted_labels = [lab.take(sorter) for lab in label_list]
group_index = group_index.take(sorter)
return lib.indices_fast(sorter, group_index, keys, sorted_labels)
# ----------------------------------------------------------------------
# sorting levels...cleverly?
def get_group_index_sorter(group_index, ngroups: int):
"""
algos.groupsort_indexer implements `counting sort` and it is at least
O(ngroups), where
ngroups = prod(shape)
shape = map(len, keys)
that is, linear in the number of combinations (cartesian product) of unique
values of groupby keys. This can be huge when doing multi-key groupby.
np.argsort(kind='mergesort') is O(count x log(count)) where count is the
length of the data-frame;
Both algorithms are `stable` sort and that is necessary for correctness of
groupby operations. e.g. consider:
df.groupby(key)[col].transform('first')
"""
count = len(group_index)
alpha = 0.0 # taking complexities literally; there may be
beta = 1.0 # some room for fine-tuning these parameters
do_groupsort = count > 0 and ((alpha + beta * ngroups) < (count * np.log(count)))
if do_groupsort:
sorter, _ = algos.groupsort_indexer(ensure_int64(group_index), ngroups)
return ensure_platform_int(sorter)
else:
return group_index.argsort(kind="mergesort")
def compress_group_index(group_index, sort: bool = True):
"""
Group_index is offsets into cartesian product of all possible labels. This
space can be huge, so this function compresses it, by computing offsets
(comp_ids) into the list of unique labels (obs_group_ids).
"""
size_hint = min(len(group_index), hashtable.SIZE_HINT_LIMIT)
table = hashtable.Int64HashTable(size_hint)
group_index = ensure_int64(group_index)
# note, group labels come out ascending (ie, 1,2,3 etc)
comp_ids, obs_group_ids = table.get_labels_groupby(group_index)
if sort and len(obs_group_ids) > 0:
obs_group_ids, comp_ids = _reorder_by_uniques(obs_group_ids, comp_ids)
return ensure_int64(comp_ids), ensure_int64(obs_group_ids)
def _reorder_by_uniques(uniques, labels):
# sorter is index where elements ought to go
sorter = uniques.argsort()
# reverse_indexer is where elements came from
reverse_indexer = np.empty(len(sorter), dtype=np.int64)
reverse_indexer.put(sorter, np.arange(len(sorter)))
mask = labels < 0
# move labels to right locations (ie, unsort ascending labels)
labels = algorithms.take_nd(reverse_indexer, labels, allow_fill=False)
np.putmask(labels, mask, -1)
# sort observed ids
uniques = algorithms.take_nd(uniques, sorter, allow_fill=False)
return uniques, labels